Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anh kim
Xem chi tiết
Minh Hiếu
12 tháng 10 2023 lúc 4:47

Ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tính chất tổng 3 góc trong 1 tam giác)

\(\Rightarrow\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2}=90^o\)

\(\Rightarrow\dfrac{\widehat{B}+\widehat{C}}{2}=90^o-\dfrac{\widehat{A}}{2}\)

\(\Rightarrow\)\(tan\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=tan\left(90^o-\widehat{\dfrac{A}{2}}\right)\)

\(\Rightarrow tan\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=cot\dfrac{A}{2}\)

Đỗ Thị Minh Ngọc
Xem chi tiết
Kamato Heiji
Xem chi tiết
nguyen thi vang
4 tháng 1 2021 lúc 21:57

gọi a,b,c là 3 cạnh của tam giác.

Ta có :\(cot\left(\dfrac{A}{2}\right)+cot\left(\dfrac{C}{2}\right)=2cot\left(\dfrac{B}{2}\right)\) <=> \(\dfrac{cot\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right)}+\dfrac{cos\left(\dfrac{C}{2}\right)}{sin\left(\dfrac{C}{2}\right)}=\dfrac{2.cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)

<=> \(\dfrac{sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{A}{2}\right)+cos\left(\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{C}{2}\right)}\)

<=> \(\dfrac{sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\) <=> \(\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)

<=> \(sin\left(\dfrac{B}{2}\right).cos\left(\dfrac{B}{2}\right)=2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{B}{2}\right)\)

<=> \(\dfrac{1}{2}sinB=\left[cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)-cos\left(\dfrac{A}{2}+\dfrac{C}{2}\right)\right]cos\left(\dfrac{B}{2}\right)\)

<=>\(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right).cos\left(\dfrac{B}{2}\right)-sin\left(\dfrac{B}{2}\right)cos\left(\dfrac{B}{2}\right)\)

<=> \(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)-\dfrac{1}{2}sinB\)

<=> sinB = \(\dfrac{1}{2}\left(sinA+sinC\right)\) <=> \(2sinB=sinA+sinC\)

<=> \(2.\dfrac{b}{2R}=\dfrac{a}{2R}+\dfrac{c}{2R}\)

<=> a+c =2b

=> 3 cạnh của tam giác tạo thành cấp số cộng.

Vũ Như Quỳnh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
10 tháng 5 2017 lúc 9:44

a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).

Bùi Thị Vân
10 tháng 5 2017 lúc 9:56

b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).

Bùi Thị Vân
10 tháng 5 2017 lúc 10:05

c) \(\left(tan\alpha-tan\beta\right)cot\left(\alpha-\beta\right)-tan\alpha tan\beta\)
\(=\left(\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}\right).\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}-tan\alpha tan\beta\)
\(=\left(\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}\right).\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}\)\(-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{sin\left(\alpha-\beta\right)}{cos\alpha cos\beta}.\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{cos\left(\alpha-\beta\right)}{cos\alpha cos\beta}-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{cos\alpha cos\beta+sin\alpha sin\beta-sin\alpha sin\beta}{cos\alpha cos\beta}=\dfrac{cos\alpha cos\beta}{cos\alpha cos\beta}=1\).

Thầy Tùng Dương
Xem chi tiết
Cao Thị Kim Ngân
18 tháng 7 2022 lúc 13:46

Vì A+B+C=180^{\circ}A+B+C=180∘ nên V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B​)sin32B​​+sin(2180∘−B​)cos32B​​−sinBcos(180∘−B)​⋅tanB.

V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B​)sin32B​​+sin(2180∘−B​)cos32B​​−sinBcos(180∘−B)​⋅tanB =\dfrac{\sin ^{3} \dfrac{B}{2}}{\sin \dfrac{B}{2}}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\cos \dfrac{B}{2}}-\dfrac{-\cos B}{\sin B} \cdot \tan B=\sin ^{2} \dfrac{B}{2}+\cos ^{2} \dfrac{B}{2}+1=2=V P=sin2B​sin32B​​+cos2B​cos32B​​−sinB−cosB​⋅tanB=sin22B​+cos22B​+1=2=VP

Suy ra điều phải chứng minh.

Nguyễn Lê Nhật Linh
Xem chi tiết
Akai Haruma
11 tháng 4 2018 lúc 13:30

Câu a)

Ta sử dụng 2 công thức:

\(\bullet \tan (180-\alpha)=-\tan \alpha\)

\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)

Áp dụng vào bài toán:

\(\text{VT}=\tan A+\tan B+\tan C=\tan A+\tan B+\tan (180-A-B)\)

\(=\tan A+\tan B-\tan (A+B)=\tan A+\tan B-\frac{\tan A+\tan B}{1-\tan A.\tan B}\)

\(=(\tan A+\tan B)\left(1+\frac{1}{1-\tan A.\tan B}\right)=(\tan A+\tan B).\frac{-\tan A.\tan B}{1-\tan A.\tan B}\)

\(=-\tan A.\tan B.\frac{\tan A+\tan B}{1-\tan A.\tan B}=-\tan A.\tan B.\tan (A+B)\)

\(=\tan A.\tan B.\tan (180-A-B)\)

\(=\tan A.\tan B.\tan C=\text{VP}\)

Do đó ta có đpcm

Tam giác $ABC$ có ba góc nhọn nên \(\tan A, \tan B, \tan C>0\)

Áp dụng BĐT Cauchy ta có:

\(P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A.\tan B.\tan C}\)

\(\Leftrightarrow P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A+\tan B+\tan C}\)

\(\Rightarrow P\geq 3\sqrt[3]{P}\)

\(\Rightarrow P^3\geq 27P\Leftrightarrow P(P^2-27)\geq 0\)

\(\Rightarrow P^2-27\geq 0\Rightarrow P\geq 3\sqrt{3}\)

Vậy \(P_{\min}=3\sqrt{3}\). Dấu bằng xảy ra khi \(\angle A=\angle B=\angle C=60^0\)

Akai Haruma
11 tháng 4 2018 lúc 13:48

Câu b)

Ta sử dụng 2 công thức chính:

\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)

\(\bullet \tan (90-\alpha)=\frac{1}{\tan \alpha}\)

Áp dụng vào bài toán:

\(\text{VT}=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{B}{2}.\tan \frac{C}{2}+\tan \frac{C}{2}.\tan \frac{A}{2}\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{C}{2}(\tan \frac{A}{2}+\tan \frac{B}{2})\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan (90-\frac{A+B}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\tan (\frac{A+B}{2})}\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2}.\tan \frac{B}{2}}}\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+1-\tan \frac{A}{2}.\tan \frac{B}{2}=1=\text{VP}\)

Ta có đpcm.

Cũng giống phần a, ta biết do ABC là tam giác nhọn nên

\(\tan A, \tan B, \tan C>0\)

Đặt \(\tan A=x, \tan B=y, \tan C=z\). Ta có: \(xy+yz+xz=1\)

Và \(T=x+y+z\)

\(\Rightarrow T^2=x^2+y^2+z^2+2(xy+yz+xz)\)

Theo hệ quả quen thuộc của BĐT Cauchy:

\(x^2+y^2+z^2\geq xy+yz+xz\)

\(\Rightarrow T^2\geq 3(xy+yz+xz)=3\)

\(\Rightarrow T\geq \sqrt{3}\Leftrightarrow T_{\min}=\sqrt{3}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow \angle A=\angle B=\angle C=60^0\)

Phạm Gia Thịnh
11 tháng 5 2021 lúc 9:45

Câu a)

Ta sử dụng 2 công thức:

∙tan(180−α)=−tanα∙tan⁡(180−α)=−tan⁡α

∙tan(α+β)=tanα+tanβ1−tanα.tanβ∙tan⁡(α+β)=tan⁡α+tan⁡β1−tan⁡α.tan⁡β

Áp dụng vào bài toán:

VT=tanA+tanB+tanC=tanA+tanB+tan(180−A−B)VT=tan⁡A+tan⁡B+tan⁡C=tan⁡A+tan⁡B+tan⁡(180−A−B)

=tanA+tanB−tan(A+B)=tanA+tanB−tanA+tanB1−tanA.tanB=tan⁡A+tan⁡B−tan⁡(A+B)=tan⁡A+tan⁡B−tan⁡A+tan⁡B1−tan⁡A.tan⁡B

=(tanA+tanB)(1+11−tanA.tanB)=(tanA+tanB).−tanA.tanB1−tanA.tanB=(tan⁡A+tan⁡B)(1+11−tan⁡A.tan⁡B)=(tan⁡A+tan⁡B).−tan⁡A.tan⁡B1−tan⁡A.tan⁡B

=−tanA.tanB.tanA+tanB1−tanA.tanB=−tanA.tanB.tan(A+B)=−tan⁡A.tan⁡B.tan⁡A+tan⁡B1−tan⁡A.tan⁡B=−tan⁡A.tan⁡B.tan⁡(A+B)

=tanA.tanB.tan(180−A−B)=tan⁡A.tan⁡B.tan⁡(180−A−B)

=tanA.tanB.tanC=VP=tan⁡A.tan⁡B.tan⁡C=VP

Do đó ta có đpcm

Tam giác ABCABC có ba góc nhọn nên tanA,tanB,tanC>0tan⁡A,tan⁡B,tan⁡C>0

Áp dụng BĐT Cauchy ta có:

P=tanA+tanB+tanC≥33√tanA.tanB.tanCP=tan⁡A+tan⁡B+tan⁡C≥3tan⁡A.tan⁡B.tan⁡C3

⇔P=tanA+tanB+tanC≥33√tanA+tanB+tanC⇔P=tan⁡A+tan⁡B+tan⁡C≥3tan⁡A+tan⁡B+tan⁡C3

⇒P≥33√P⇒P≥3P3

⇒P3≥27P⇔P(P2−27)≥0⇒P3≥27P⇔P(P2−27)≥0

⇒P2−27≥0⇒P≥3√3⇒P2−27≥0⇒P≥33

Vậy Pmin=3√3Pmin=33. Dấu bằng xảy ra khi ∠A=∠B=∠C=600

Khách vãng lai đã xóa
Thầy Cao Đô
Xem chi tiết
Trần Gia Phong
20 tháng 5 2021 lúc 15:27

.jkilfo,o7m5ijk

Khách vãng lai đã xóa
Nguyễn Văn Tuấn
15 tháng 6 2021 lúc 14:55

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alpha

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)

=\sin \alpha .

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alpha

Khách vãng lai đã xóa
Trần Thị Khánh Ly
24 tháng 1 2022 lúc 20:49
Khách vãng lai đã xóa