tìm x, y
113=x2-y2
1) x2-x-y2-y
2) x2 -y2 +x-y
3) 3x-3y+x2-y2
4) 5x-5y+x2-y2
5) x2-5x-y2-5y
6) x2-y2 +2x-2y
7) x2 -4y2+x+2y
8) x2-y2-2x-2y
9) x2 -4y2+2x+4y
1: \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
2: \(x^2-y^2+x-y\)
\(=\left(x^2-y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
3: \(3x-3y+x^2-y^2\)
\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
4: \(5x-5y+x^2-y^2\)
\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(5+x+y\right)\)
5: \(x^2-5x-y^2-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
6: \(x^2-y^2+2x-2y\)
\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+2\right)\)
7: \(x^2-4y^2+x+2y\)
\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+1\right)\)
8: \(x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
9: \(x^2-4y^2+2x+4y\)
\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)
trong mp tọa độ Oxy cho Parabol (P) : y= x^2 và đt ̉ (d) : y= k(x-1) +2
1. C/M rằng với mọi k thuộc R đường thẳng (d) luôn cắt Parabol (P) tại 2 điểm phân biệt A,B
2.Giả sửA(x1;y1) ; B(x2;y2) . Tìm k thỏa mãn (x1^2 + y1) + (x2^2 + y2 ) = 14
1: Phương trình hoành độ giao điểm là:
\(x^2-kx+k-2=0\)
\(\text{Δ}=\left(-k\right)^2-4\left(k-2\right)\)
\(=k^2-4k+8=\left(k-2\right)^2+4>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
2: Theo đề, ta có; \(x_1^2+x_2^2+x_1^2+x_2^2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow k^2-2\left(k-2\right)=7\)
\(\Leftrightarrow k^2-2k-3=0\)
=>(k-3)(k+1)=0
=>k=3 hoặc k=-1
cho x,y là 2 địa lượng tỉ lệ nghịch, biết x1 và x2 tỉ lệ thuân với 2;3; y2 =10. hãy tìm hệ số tỉ lệ của y đối với x
( x – y ) 2 bằng:
A. x 2 + y 2
B. ( y – x ) 2
C. y 2 – x 2
D. x 2 – y 2
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
C33.4:
Ta có: {x2+y2=1(1)21x+3y+48x2−48y2+28xy=69(2){x2+y2=1(1)21x+3y+48x2−48y2+28xy=69(2)
Từ pt (1) ta có: x2+y2=1⇒y2=1−x2x2+y2=1⇒y2=1−x2
Thay vào pt (2) ta được: 21x+3√1−x2+48x2−48(1−x2)+28x√1−x2−69=021x+31−x2+48x2−48(1−x2)+28x1−x2−69=0
⇔3√(1−x)(1+x)+28x√(1−x)(1+x)−21√(1−x)(1−x)−48(1−x2)−48(1−x2)=0⇔3(1−x)(1+x)+28x(1−x)(1+x)−21(1−x)(1−x)−48(1−x2)−48(1−x2)=0
⇔√1−x(3√1+x+28x√1+x−21√1−x−96(1+x)√1−x)=0⇔1−x(31+x+28x1+x−211−x−96(1+x)1−x)=0
⇔[√1−x=03√1+x+28x√1+x−21√1−x−96(1+x)√1−x=0⇔[1−x=031+x+28x1+x−211−x−96(1+x)1−x=0
+ Nếu √1−x=0⇔1−x=0⇔x=1⇒y=01−x=0⇔1−x=0⇔x=1⇒y=0
+Nếu 3√1+x+28x√1+x−21√1−x−96(1+x)√1−x=031+x+28x1+x−211−x−96(1+x)1−x=0
⇔3√1+x+28x√1+x=21√1−x+96(1+x)√1−x⇔31+x+28x1+x=211−x+96(1+x)1−x
⇔784x3+952x2+177x+9=−9216x3−13248x2+8775x+13689⇔784x3+952x2+177x+9=−9216x3−13248x2+8775x+13689
⇔10000x3+14200x2−8598x−13680=0⇔10000x3+14200x2−8598x−13680=0
⇔x=2425⇒y=725⇔x=2425⇒y=725
Thay x=2424;y=725x=2424;y=725 vào hệ pt ta thấy thoả mãn
x=2425;y=725x=2425;y=725 là 1 cặp nghiệm của hệ pt
Vậy hệ pt có nghiệm: (x;y)∈{(2425;725),(1;0)}(x;y)∈{(2425;725),(1;0)}
Đúng hay sai?
Đúng nhưng có người trả lời rồi,cop mần chi cho khổ :)
Rút gọn biểu thức x(x − y) − y(y − x) ta được ?
(A) x 2 + y 2
(B) x 2 - y 2
(C) x 2 - x y
(D) x - y 2
Hãy chọn kết quả đúng.
Ta có:
x x - y - y y - x = x 2 - x y - y 2 - x y = x 2 - x y - y 2 + x y = x 2 - y 2
Chọn (B) x 2 - y 2
Bài 2. Phân tích đa thức thành nhân tử
a) 5x – 15y | b) 5x2y2 + 15x2y + 30xy2 |
c) x3 – 2x2y + xy2 – 9x | d) x(x2 – 1) + 3(x2 – 1) |
e) x2 – 10x + 25 | g) x2 – 64 |
h) (x + y)2 – (x2 – y2) | i) 5x2 + 5xy – x – y |
k) x2 – 25 + y2 + 2xy | l) 2xy – x2 – y2 + 16 |
m) (x – 2)(x – 3) + (x – 2) - 1 | n) 3(x – 1) + 5x( 1 – x) |
p) 12y(2x – 5) + 6xy(5 – 2x) | q) ax – 2x – a2 + 2a |
Bài 3. Phân tích đa thức thành nhân tử
a) a2 – b2 – 2a + 1 | b) x2 – 2x – 4y2 – 4y |
c) x2 + 4x – y2 + 4 | d) x4 – 1 |
e) x4 + x3 + x2 + x | g) a2 + 2ab + b2 – ac - bc |
d: \(x\left(x^2-1\right)+3\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
e: \(x^2-10x+25=\left(x-5\right)^2\)
g: \(x^2-64=\left(x-8\right)\left(x+8\right)\)
h: \(\left(x+y\right)^2-\left(x^2-y^2\right)\)
\(=\left(x+y\right)\left(x+y-x+y\right)\)
\(=2y\left(x+y\right)\)
i: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
k: \(x^2+2xy+y^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
l: \(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
a: \(5x-15y=5\left(x-3y\right)\)
b: \(5x^2y^2+15x^2y+30xy^2=5xy\left(xy+3x+6y\right)\)
c: \(x^3-2x^2y+xy^2-9x\)
\(=x\left(x^2-9-2xy+y^2\right)\)
\(=x\left(x-y-3\right)\left(x-y+3\right)\)