Viết PT đường tròn (c) trog trường hợp sau:
đi qua A(1;1) B(1;4) và tiếp xúc trục Ox
Viết PT đường tròn (c) trog trường hợp sau:
đi qua A(1;1) B(1;4) và tiếp xúc trục Ox
Gọi tâm đường tròn là \(I\left(a;b\right)\Rightarrow IA=IB=d\left(I;Ox\right)=b\)
\(\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a-1;b-1\right)\\\overrightarrow{BI}=\left(a-1;b-4\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a-1\right)^2+\left(b-1\right)^2\\BI^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)
\(AI^2=BI^2\Rightarrow\left(b-1\right)^2=\left(b-4\right)^2\)
\(\Rightarrow-2b+1=-8b+16\Rightarrow b=\dfrac{5}{2}\)
Lại có:
\(IA=b\Rightarrow IA^2=b^2\Rightarrow\left(a-1\right)^2+\left(\dfrac{5}{2}-1\right)^2=\left(\dfrac{5}{2}\right)^2\)
\(\Rightarrow\left(a-1\right)^2=4\Rightarrow\left[{}\begin{matrix}a=3\\a=-1\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x-3\right)^2+\left(y-\dfrac{5}{2}\right)^2=\dfrac{25}{4}\\\left(x+1\right)^2+\left(y-\dfrac{5}{2}\right)^2=\dfrac{25}{4}\end{matrix}\right.\)
\(A(1;-2),B(3;4),C(-1;0)\)
a) Viết pt đường tròn đi qua A,B và có R=5
b) Viết pt đường tròn đi qua A,B và tiếp xúc với đường thẳng AC
a, Phương trình đường thẳng AB: \(\dfrac{x-3}{2}=\dfrac{y-4}{6}\Leftrightarrow3x-y-5=0\)
Trung điểm I của AB có tọa độ: \(\left\{{}\begin{matrix}x_I=\dfrac{1+3}{2}=2\\y_I=\dfrac{4-2}{2}=1\end{matrix}\right.\Rightarrow I=\left(2;1\right)\)
Phương trình trung trực của AB: \(x+3y-5=0\)
Giả sử \(O=\left(5-3m;m\right)\) là tâm đường tròn
Ta có: \(OA=5\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow2m^2-4m-1=0\)
\(\Leftrightarrow m=\dfrac{2\pm\sqrt{6}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\\O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\end{matrix}\right.\)
TH1: \(O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\)
TH2: \(O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
Kết luận: Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\) hoặc \(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
b, Phương trình đường thẳng AC: \(x+y+1=0\)
Phương trình đường thẳng OA: \(x-y-3=0\)
Giả sử \(O=\left(m;m-3\right)\) là tâm đường tròn
Ta có: \(OA=OB\Leftrightarrow\left(1-m\right)^2+\left(1-m\right)^2=\left(3-m\right)^2+\left(7-m\right)^2\)
\(\Leftrightarrow m=\dfrac{7}{2}\)
\(\Rightarrow O=\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)
Bán kính: \(R=OA=\sqrt{\left(1-\dfrac{7}{2}\right)^2+\left(-2-\dfrac{1}{2}\right)^2}=\dfrac{5\sqrt{2}}{2}\)
Phương trình đường tròn:
\(\left(x-\dfrac{7}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{25}{2}\)
1) Viết pt đường tròn tâm l (1,-1) và đi qua điểm B (1,3) 2) Viết pt đường tròn tâm l (3,-4) và đi qua điểm A (1,3) 3) Viết pt đường tròn tâm l ( -2,4) , đi qua điểm B (-6,1) 4) viết pt đường tròn tâm l (1,-2) và đi qua điểm N ( 3,4) Giúp vs bạn
cho đường tròn (c) pt: \(\left(x+1\right)^2+y^2=9.\) viết PT đường thẳng đi qua A(2;3) cắt đường tròn (c) tại 2 điểm M,N so cho MN=6
Đường tròn (C) tâm \(I\left(-1;0\right)\) bán kính \(R=3\)
\(MN=6=2R\Rightarrow MN\) là đường kính
\(\Rightarrow\) Đường thẳng d đi qua tâm I của đường tròn
\(\Rightarrow\) Đường thẳng d là đường thẳng IA
\(\overrightarrow{IA}=\left(3;3\right)=3\left(1;1\right)\Rightarrow\) đường thẳng d nhận (1;-1) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)
Cho điểm A(-3;-1), B(2;1), đường thẳng d: x-y+1=0.
a. Tính khoảng cách từ A, B đến đường thẳng d.
b. Viết pt đường thẳng d1 đi qua A và vuông góc với d.
c. Viết phương trình đthẳng d2 đi qua B và song song với d.
d. Viết pt đường tròn (C) có tâm I thuộc d và đi qua 2 điểm A, B
a,Viết PT chính tắc của đường tròn (C) biết tâm I(1;-2) di qua điểm A(-2;0) b. Viết phương trình tiếp tuyến của (C) tại M(4,0)
a: \(IA=\sqrt{\left(-2-1\right)^2+\left(0+2\right)^2}=\sqrt{13}\)
Phương trình (C) là:
(x-1)^2+(y+2)^2=13
b: vecto IM=(3;2)
Phương trình tiếp tuyến là:
3(x-4)+2(y-0)=0
=>3x+2y-12=0
Giúp mình với ạ Trong mặt phẳng oxy cho tam giác ABC biết A=(2;-3), B=(-1;2),C=(1;-4) a) viết pt tham số của các cạnh tam giác ABC b)Viết pt tổng quát của đuờng cao AH c)Viết pt đường tròn có tâm O đi qua B
Cho A ( 1; 3 ), B( 4; -1 ), (d) x = 2y+1
a, Viết pt đường thẳng qua A, B
b, Viết pt đường thẳng đi qua A và cắt trục hoành tại điểm có tung độ = -1
c, Viết pt đường thẳng qua A và có hệ số góc là 5
d, Viết pt đường thẳng qua A song song với (d)
e, Viết pt đường thẳng qua A vuông góc với (d)
(d): 2y+1=x
=>2y=x-1
=>y=1/2x-1/2
a: Gọi (d1): y=ax+b là phương trình đường thẳng AB
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\4a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{3}\\b=3-a=3+\dfrac{4}{3}=\dfrac{13}{3}\end{matrix}\right.\)
c: Gọi (d2): y=ax+b là phương trình đường thẳng cần tìm
Vì (d2) có hệ số góc là 5 nên a=5
Vậy: (d2): y=5x+b
Thay x=1 và y=3 vào (d2), ta được:
b+5=3
hay b=-2
d: Gọi (d3): y=ax+b là phương trình đường thẳng cần tìm
Vì (d3)//(d) nên a=-1/2
Vậy: (d3): y=-1/2x+b
Thay x=1 và y=3 vào (d3), ta được;
b-1/2=3
hay b=7/2
10. Viết pt đường thẳng \(d\) trong các trường hợp sau:
a. \(d\) đi qua 2 điểm \(A,B\) với \(A\left(1;3\right)\) và \(B\left(2;4\right)\)
b.\(d\) đi qua 2 điểm \(C,D\) với \(C\left(-3;2\right)\) và \(D\left(2;3\right)\)
a: (d): y=ax+b
Theo đề, ta có hệ:
a+b=3 và 2a+b=4
=>a=1 và b=2
b: Theo đề, ta có hệ:
-3a+b=2 và 2a+b=3
=>a=1/5 và b=13/5