Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Young Forever ebxtos
Xem chi tiết
o0oNguyễno0o
13 tháng 7 2017 lúc 18:46

a)  2x2 - 98 = 0

     2x2        = 0 + 98

     2x2        = 98

       x2        = 98 : 2

       x2         = 49

       x          = \(\sqrt{49}\)

=>   x   = 7

»βέ•Ҫɦαηɦ«
13 tháng 7 2017 lúc 18:46

Ta có : 2x2 - 98 = 0

=> 2(x2 - 49) = 0

Mà : 2 > 0

Nên x2 - 49 = 0

=> x2 = 49

=> x2 = -7;7

Nguyễn Tiến Dũng
14 tháng 7 2017 lúc 12:58

2x2-98=0

=>2(x2-49)=0

=>x2-49=0

x2=49+0

x2=72

x=7

Đặng Tiến Dũng
Xem chi tiết
Võ Thanh Lâm
17 tháng 9 2016 lúc 18:55

3, A=(x-3)^2+(x-11)^2

\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)

\(\Rightarrow\)(X^2-9)+(X^2-121)

Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0

\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121

\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130

Dấu = xảy ra khi : X=0

Vậy : Min A = -130 khi x=0

Mình mới lớp 7 sai thì thôi nhé

nguyễn minh châu
Xem chi tiết
Phó Đình Hào
Xem chi tiết
Xyz OLM
28 tháng 8 2020 lúc 10:41

x+ y2 + 10x + 6y + 34 = 0

=> (x2 + 10x + 25) + (y2 + 6y + 9) = 0

=> (x + 5)2 + (y + 3)2 = 0

=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Vậy x = - 5 ; y = -3

b) 25x2 + 4y2 + 10x + 4y + 2 = 0

=> (25x2 + 10x + 1) + (4y2 + 4y + 1) = 0

=> (5x + 1)2 + (2y + 1)2 = 0

=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,2\\y=-0,5\end{cases}}\)

Vậy x = -0,2 ; y = -0,5

Khách vãng lai đã xóa
Capheny Bản Quyền
28 tháng 8 2020 lúc 10:51

a) 

\(x^2+10x+25+y^2+6y+9=0\)    

\(\left(x+5\right)^2+\left(y+3\right)^2=0\)  ( 1 ) 

Ta có : 

\(\left(x+5\right)^2\ge0\forall x\) 

\(\left(y+3\right)^2\ge0\forall y\) 

\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)   

\(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\)         

\(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)   

b) 

\(25x^2+10x+1+4y^2+4y+1=0\)     

\(\left(5x+1\right)^2+\left(2y+1\right)^2=0\) ( 1 ) 

Ta có : 

\(\left(5x+1\right)^2\ge0\forall x\)      

\(\left(2y+1\right)^2\ge0\forall y\)  

\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(5x+1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)   

\(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\)    

\(\hept{\begin{cases}x=\frac{-1}{5}\\y=\frac{-1}{2}\end{cases}}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
28 tháng 8 2020 lúc 11:28

x2 + y2 + 10x + 6y + 34 = 0

<=> ( x2 + 10x + 25 ) + ( y2 + 6y + 9 ) = 0

<=> ( x + 5 )2 + ( y + 3 )2 = 0

<=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

25x2 + 4y2 + 10x + 4y + 2 = 0

<=> ( 25x2 + 10x + 1 ) + ( 4y2 + 4y + 1 ) = 0

<=> ( 5x + 1 )2 + ( 2y + 1 )2 = 0

<=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{5}\\y=-\frac{1}{2}\end{cases}}\)

Khách vãng lai đã xóa
ỉn2k8>.
Xem chi tiết
Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 8:26

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

missing you =
29 tháng 6 2021 lúc 8:33

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4

 

 

 

Khánh Linh Lý
Xem chi tiết
Huy Thắng Nguyễn
20 tháng 7 2017 lúc 16:27

a) \(25x^2-10x+3=25x^2-10x+1+2\)

\(=\left(5x-1\right)^2+2\)

\(\left(5x-1\right)^2\ge0\forall x\)

Nên \(\left(5x-1\right)^2+2>0\forall x\)

Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.

b) \(y^2-y+2=y^2-y+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\)

\(\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\)

Nên \(\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall x\)

Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.

c) \(y^2-3y+5=y^2-3y+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

\(\left(y-\dfrac{3}{2}\right)^2\ge0\forall x\)

Nên \(\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.

d) \(16y^2-6y+9=16y^2-6y+\dfrac{9}{16}+\dfrac{135}{16}\)

\(=\left(4x-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\)

\(\left(4x-\dfrac{3}{4}\right)^2\ge0\forall x\)

Nên \(\left(4x-\dfrac{3}{4}\right)^2+\dfrac{135}{16}>0\forall x\)

Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.

Mới vô
20 tháng 7 2017 lúc 16:35

a,

\(25x^2-10x+3\\ =\left(5x\right)^2-10x+1+2\\ =\left(5x-1\right)^2+2\\ \left(5x-1\right)^2\ge0\forall x\\ \Rightarrow\left(5x-1\right)^2+2\ge2\forall x\\ \Rightarrow\left(5x-1\right)^2+2>0\forall x\)

b,

\(y^2-y+2\\ =y^2-y+\dfrac{1}{4}+\dfrac{7}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\\ \left(y-\dfrac{1}{2}\right)^2\ge0\forall y\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall y\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall y\)

c,

\(y^2-3y+5\\ =y^2-3y+\dfrac{9}{4}+\dfrac{11}{4}\\ =\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\\ \left(y-\dfrac{3}{2}\right)^2\ge0\forall y\\ \Rightarrow\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall y\\ \Rightarrow\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall y\)

d,

\(16y^2-6y+9\\ =\left(4y\right)^2-6y+\dfrac{9}{16}+\dfrac{135}{16}\\ =\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\\ \left(4y-\dfrac{3}{4}\right)^2\ge0\forall y\\ \Rightarrow\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\ge\dfrac{135}{16}\forall y\\ \Rightarrow\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}>0\forall y\)

Hoàng Thu Phương
Xem chi tiết
Yeutoanhoc
11 tháng 4 2021 lúc 9:24

`(x-1)/3+(3x-5)/2+(2x)/9+(-5x)/9`

`=(x-1)/3+(3x-5)/2+x/3`

`=(2x-2+9x-15+2x)/6`

`=(13x-17)/6`

phan thuy nga
Xem chi tiết
Đặng Quỳnh Ngân
21 tháng 9 2016 lúc 16:09

a) =2x - 3 =0

     x = 3/2

b) (5x -1)2 = 0

     5x - 1 =  0

       x = 1/5

c) = ( x +3)2 = 0

        x+3  = 0

         x = -3

d) =(13+y)(13-y) = 0

        y = 13; -13

e) xem lại đề bài này

phan thuy nga
21 tháng 9 2016 lúc 16:12

thank bạn nhiều lắm

An Hoà
21 tháng 9 2016 lúc 16:12

a ) ( 2 x - 3 ) ^ 2 = 0

=> 2 x - 3           = 0

     2 x                = 3

        x                = 1,5

b ) 25 x ^ 2  - 10 x + 1 = 0

  (  5 x ) ^ 2   -  2 . 5 x + 1 ^ 2 = 0

  ( 5 x - 1 ) ^  2                       = 0

  5 x - 1                                  = 0

  5x                                        = 1

    x                                        = 0,2

c ) 6 x + 9 = - x ^ 2

   6 x + 9 + x ^ 2 = 0

  x ^ 2 + 2 . x . 3 + 3 ^ 2 = 0

  ( x + 3 ) ^ 2                  = 0

  x + 3                            = 0

        x                            = -3

d ) 169 - y ^ 2 = 0

            y  ^ 2  = 169

            y ^ 2   = 13 ^ 2

=> y     = 13

   

  

Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 19:46

\(x^7+x^6+x^4+x^3+x^2+1\)

\(=x^4\left(x^3+x^2+1\right)+\left(x^3+x^2+1\right)\)

\(=\left(x^3+x^2+1\right)\left(x^4+1\right)\)