giúp mình với
x^2-10x=-25
x^3+y=0
1,Tìm x:
a,2x2-98=0
b,25x2-10x=-1
c,25x2-10x=3
d,x3+6x2+12x=63
e,x3+36=12x
f,4x2+4x+4y2+4y=-2
GIÚP MÌNH NHÉ!!!!MÌNH SẼ T*** CHO ^.^
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
2x2-98=0
=>2(x2-49)=0
=>x2-49=0
x2=49+0
x2=72
x=7
Giúp mình câu này với!
Bài 1: Tìm giá trị nhỏ nhất của biểu thức sau:
A=(x+3y-5)- 6xy +26
Bài 2: CM rằng:
B=x^2 +xy+y^2-10-x >=0 với mọi x,y và x,y không đồng thời =0
C=4x^2-10-x<=0 với mọi x
Bài 3:Tìm GTNN
A=(x-3)^2+(x-11)^2
B=25x^2+3y^2-10x+11
Mong m.n giúp mình cái.
3, A=(x-3)^2+(x-11)^2
\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)
\(\Rightarrow\)(X^2-9)+(X^2-121)
Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0
\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121
\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130
Dấu = xảy ra khi : X=0
Vậy : Min A = -130 khi x=0
Mình mới lớp 7 sai thì thôi nhé
- Giúp mình 3 câu này nha,mai nộp rồi á.....tks nhìu
a) 4x(2y-7) + 7y(z-2y)
b) 3x^3 y^2 - 6x^2 y^3 + 9x^2 y^2
c) 5x^2 y^3 - 25x^3 y^4 + 10x^2 y^3
Tìm x , y :
a) x^2 + y^2 + 10x + 6y + 34 = 0
b) 25x^2 + 4y^2 + 10x + 4y + 2 = 0
x2 + y2 + 10x + 6y + 34 = 0
=> (x2 + 10x + 25) + (y2 + 6y + 9) = 0
=> (x + 5)2 + (y + 3)2 = 0
=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Vậy x = - 5 ; y = -3
b) 25x2 + 4y2 + 10x + 4y + 2 = 0
=> (25x2 + 10x + 1) + (4y2 + 4y + 1) = 0
=> (5x + 1)2 + (2y + 1)2 = 0
=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,2\\y=-0,5\end{cases}}\)
Vậy x = -0,2 ; y = -0,5
a)
\(x^2+10x+25+y^2+6y+9=0\)
\(\left(x+5\right)^2+\left(y+3\right)^2=0\) ( 1 )
Ta có :
\(\left(x+5\right)^2\ge0\forall x\)
\(\left(y+3\right)^2\ge0\forall y\)
\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)
\(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\)
\(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
b)
\(25x^2+10x+1+4y^2+4y+1=0\)
\(\left(5x+1\right)^2+\left(2y+1\right)^2=0\) ( 1 )
Ta có :
\(\left(5x+1\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall y\)
\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(5x+1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
\(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\)
\(\hept{\begin{cases}x=\frac{-1}{5}\\y=\frac{-1}{2}\end{cases}}\)
x2 + y2 + 10x + 6y + 34 = 0
<=> ( x2 + 10x + 25 ) + ( y2 + 6y + 9 ) = 0
<=> ( x + 5 )2 + ( y + 3 )2 = 0
<=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
25x2 + 4y2 + 10x + 4y + 2 = 0
<=> ( 25x2 + 10x + 1 ) + ( 4y2 + 4y + 1 ) = 0
<=> ( 5x + 1 )2 + ( 2y + 1 )2 = 0
<=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{5}\\y=-\frac{1}{2}\end{cases}}\)
Bài1 Tìm GTLN của biểu thức
A=-x^2-10x+1
B=-4x^2-6x-5
C=-16x^2+8x-1
Bài2 Tìm GTNN của biểu thức
A=4x^2-8x+5
B=25x^2-10x-3
C=49x^2-28x+1
giúp mình với T-T
Bài 2 :
\(A=4x^2-2.2x.2+4+1\)
\(=\left(2x-2\right)^2+1\)
Thấy : \(\left(2x-2\right)^2\ge0\)
\(A=\left(2x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow x=1\)
\(B=\left(5x\right)^2-2.5x.1+1-4\)
\(=\left(5x-1\right)^2-4\)
Thấy : \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)
Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)
\(C=\left(7x\right)^2-2.7x.2+4-5\)
\(=\left(7x-2\right)^2-5\)
Thấy : \(\left(7x-2\right)^2\ge0\)
\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)
Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)
\(1.\)
\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)
\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)
\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5
\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)
\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)
\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)
dấu"=" xảy ra<=>x=1/4
Chứng minh rằng:
a, \(25x^2-10x+3>0\)
b, \(y^2-y+2>0\)
c,\(y^2-3y+5>0\)
d, \(16y^2-6y+9>0\)
a) \(25x^2-10x+3=25x^2-10x+1+2\)
\(=\left(5x-1\right)^2+2\)
Vì \(\left(5x-1\right)^2\ge0\forall x\)
Nên \(\left(5x-1\right)^2+2>0\forall x\)
Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.
b) \(y^2-y+2=y^2-y+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\)
Vì \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\)
Nên \(\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall x\)
Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.
c) \(y^2-3y+5=y^2-3y+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(y-\dfrac{3}{2}\right)^2\ge0\forall x\)
Nên \(\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall x\)
Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.
d) \(16y^2-6y+9=16y^2-6y+\dfrac{9}{16}+\dfrac{135}{16}\)
\(=\left(4x-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\)
Vì \(\left(4x-\dfrac{3}{4}\right)^2\ge0\forall x\)
Nên \(\left(4x-\dfrac{3}{4}\right)^2+\dfrac{135}{16}>0\forall x\)
Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.
a,
\(25x^2-10x+3\\ =\left(5x\right)^2-10x+1+2\\ =\left(5x-1\right)^2+2\\ \left(5x-1\right)^2\ge0\forall x\\ \Rightarrow\left(5x-1\right)^2+2\ge2\forall x\\ \Rightarrow\left(5x-1\right)^2+2>0\forall x\)
b,
\(y^2-y+2\\ =y^2-y+\dfrac{1}{4}+\dfrac{7}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\\ \left(y-\dfrac{1}{2}\right)^2\ge0\forall y\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall y\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall y\)
c,
\(y^2-3y+5\\ =y^2-3y+\dfrac{9}{4}+\dfrac{11}{4}\\ =\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\\ \left(y-\dfrac{3}{2}\right)^2\ge0\forall y\\ \Rightarrow\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall y\\ \Rightarrow\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall y\)
d,
\(16y^2-6y+9\\ =\left(4y\right)^2-6y+\dfrac{9}{16}+\dfrac{135}{16}\\ =\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\\ \left(4y-\dfrac{3}{4}\right)^2\ge0\forall y\\ \Rightarrow\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\ge\dfrac{135}{16}\forall y\\ \Rightarrow\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}>0\forall y\)
giúp mình với
x-1/3 + 3x-5/2 + 2x/9 + (-5x)/9
`(x-1)/3+(3x-5)/2+(2x)/9+(-5x)/9`
`=(x-1)/3+(3x-5)/2+x/3`
`=(2x-2+9x-15+2x)/6`
`=(13x-17)/6`
tim x,y,z biết
a)(2x-3)^2=0
b) 25x^2-10x+1=0
c) 6x+9=-x^2
d) 169-y^2=0
e) 2x^2-2xy-4x+5=0
giup mik vs
tôi đi hok
nhanh nhé
a) =2x - 3 =0
x = 3/2
b) (5x -1)2 = 0
5x - 1 = 0
x = 1/5
c) = ( x +3)2 = 0
x+3 = 0
x = -3
d) =(13+y)(13-y) = 0
y = 13; -13
e) xem lại đề bài này
a ) ( 2 x - 3 ) ^ 2 = 0
=> 2 x - 3 = 0
2 x = 3
x = 1,5
b ) 25 x ^ 2 - 10 x + 1 = 0
( 5 x ) ^ 2 - 2 . 5 x + 1 ^ 2 = 0
( 5 x - 1 ) ^ 2 = 0
5 x - 1 = 0
5x = 1
x = 0,2
c ) 6 x + 9 = - x ^ 2
6 x + 9 + x ^ 2 = 0
x ^ 2 + 2 . x . 3 + 3 ^ 2 = 0
( x + 3 ) ^ 2 = 0
x + 3 = 0
x = -3
d ) 169 - y ^ 2 = 0
y ^ 2 = 169
y ^ 2 = 13 ^ 2
=> y = 13
Giúp mình với
x^7+x^6+x^4+x^3+x^2+1
\(x^7+x^6+x^4+x^3+x^2+1\)
\(=x^4\left(x^3+x^2+1\right)+\left(x^3+x^2+1\right)\)
\(=\left(x^3+x^2+1\right)\left(x^4+1\right)\)