A(x)=x^3 -9x
tìm nghiệm của đa thức trên
Cho đa thức f(x)=x3-a.x2-9.x+b
a) Tìm a và b để đa thức f(x) có nghiệm là 1 và 3.
b) Tìm tập hợp nghiệm của đa thức f(x) với a và b vừa tìm được ở trên.
a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)
=> \(1-a-9+b=27-9a-27+b\)
=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)
Từ đó tính được b = 9.
b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)
Đa thức f(x) có nghiệm khi:
\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)
Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.
cho hai đa thức M(x)=1/2x^3-3x-x^2+3;N(x)=-4x+x^2+1/2x^3+6
a)sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.
b)tìm nghiệm của đa thức A(x)=M(x)-N(x)
A(x)= x-2x2+3x5+x4+x+x2
B(x)= -2x2+x-2-x4+3x2-3x5
a.Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
b.Tìn đa thức M(x) = A(x) + B(x)
c.Tính giá trị của đa thức M(x) khi x= -2
d.x=3 có phải là nghiệm của đa thức M(x) không? Vì sao
a: A(x)=3x^5+x^4+x^2+2x
B(x)=-3x^5-x^4+x^2+x-2
b: M(x)=3x^5+x^4+x^2+2x-3x^5-x^4+x^2+x-2
=2x^2+3x-2
c: M(-2)=8-6-2=0
d: M(3)=2*3^2+3*3-2=18+9-2=25
=>x=3 ko là nghiệm
1) Tìm nghiệm của đa thức: 2x2+2x+1.
2)
a) Viết tập hợp S tất cả các nghiệm của đa thức x3-2x2-5x+6 biết rằng đa thức trên không có quá 3 nghiệm.
b) Viết tập hợp các nghiệm của đa thức x3 + 3x2 - 6x - 8.
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
Cho hai đa thức P(x) = 5x3- 5x + 9 + x và Q(x) = -53 + 3x - 1 + x +x2 - 4
a, Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
b, Tìm nghiệm của đang thức M(x) = P(x) + Q(x)
c, Tìm nghiệm của đa thức M(x)
a) P(x) =5x3 - 5x + 9 +x
=5x3 + (-5x + x) + 9
= 5x3 - 4x + 9
Sắp xếp: tương tự như trên.
Mk đang bận chút mk làm tiếp.
a, P(x) = 5x3 - 4x + 9
Q(x) = x2 + 4x - 130
b, M(x) = 5x3 - 4x + 9 + x2 + 4x - 130 = 5x3+x2-121
nghiệm của đa thức M(x) là: x=2,827335766
14. Cho hai đa thức:
A(x) = 6x3 - x (x + 2) + 4 (x + 3);
B(x) = -x (x + l)- (4 - 3x) + x2 (x - 2).
a) Thu gọn các đa thức trên.
b) Tìm nghiệm của đa thức C(x) = A(x) + B(x) - x2 (7x - 4).
a) A(x) = 6x3-x(x+2)+4(x+3)
= 6x3-x2+2x+12
B(x) = -x(x+1)-(4-3x)+x2(x-2)
= -(x2)-x-4+3x+x3-2x2
= x3-3x2+2x-4
b) C(x) = 6x3-x2+2x+12+x3-3x2+2x-4-7x3+4x2=0
⇒ 4x+8=0
⇒ 4x = -8
⇒ x = -2
Vậy nghiệm của đa thức C(x) là 2
đề bài : cho đa thức P(X) = \(5x^3+2x^4-x^2+3x^2-x^3-2x^4+1-4x^3\)
a) Thu gọn và sắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(-1)
c) Chứng tỏ rằng đa thức trên không có nghiệm
a) \(P(x) = 5x^3 + 2x^4 - x^2 + 3x^2 - x^3 - 2x^4 +1 -4x^3\)
\(= (2x^4 - 2x^4) + (5x^3 - 4x^3 - x^3) + (-x^2 + 3x^2) + 1 \)
\(=2x^2 +1\)
b) \(P(1) = 2.1^2 +1 = 2 + 1 = 3\)
\(P(-1) = 2.(-1)^2 + 1 = 2 + 1 = 3\)
c) Vì \(2x^2 \geq 0 \) với mọi x; 1 > 0 nên \(2x^2 + 1 > 0\) hay P(x) > 0 với mọi x
=> Đa thức trên không có nghiệm
Đây là môn Toán mà sao lại thuộc về lĩnh vực Vật Lí
a M(x)=4x^3-7x^2+x-12
N(x)= -4x^3+5x^2-9x+12
tìm nghiệm của 2 đa thức trên
cho hai đa thức f(x)= (x-1)(x+3) và g(x)=x^3-ax^2+bx-3
xác định hệ số a,b của đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Ta có :
\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) )
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)
+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(1^3-a.1^2+b.1-3=0\)
\(\Leftrightarrow\)\(1-a+b-3=0\)
\(\Leftrightarrow\)\(a-b=1-3\)
\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)
+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(9a-3b=-27-3\)
\(\Leftrightarrow\)\(9a-3b=-30\)
\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)
\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(a-b+b-3a=-2+10\)
\(\Leftrightarrow\)\(-2a=8\)
\(\Leftrightarrow\)\(a=\frac{8}{-2}\)
\(\Leftrightarrow\)\(a=-4\)
Do đó :
\(a-b=-2\)
\(\Leftrightarrow\)\(-4-b=-2\)
\(\Leftrightarrow\)\(b=2-4\)
\(\Leftrightarrow\)\(b=-2\)
Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)
Chúc bạn học tốt ~