Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:14

1. Do \(EG||AC\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)}=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}\)

Mà \(AF=AC=CF=AB\sqrt{2}\Rightarrow\Delta ACF\) đều

\(\Rightarrow\widehat{FAC}=60^0\)

2.

Do I;J lần lượt là trung điểm SC, BC \(\Rightarrow IJ\) là đường trung bình tam giác SBC

\(\Rightarrow IJ||SB\)

Lại có \(CD||BA\Rightarrow\widehat{\left(IJ;CD\right)}=\widehat{SB;BA}=\widehat{SBA}=60^0\) (do các cạnh của chóp bằng nhau nên tam giác SAB đều)

Nguyễn Dũng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 6 2019 lúc 7:28

Giải bài tập Toán 11 | Giải Toán lớp 11

Giải bài tập Toán 11 | Giải Toán lớp 11

Nho Dora
Xem chi tiết
laala solami
24 tháng 3 2022 lúc 19:31

c

nguyenminhduc
24 tháng 3 2022 lúc 19:32

C

Vũ Quang Huy
24 tháng 3 2022 lúc 19:32

c

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 12:15

Phương anh
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2021 lúc 22:20

F là trung điểm AB \(\Rightarrow\overrightarrow{AF}=\dfrac{1}{2}\overrightarrow{AB}\) ; E là trung điểm AC \(\Rightarrow\overrightarrow{AE}=\dfrac{1}{2}\overrightarrow{AC}\)

Ta có EF song song BC (đường trung bình)

Mà D là trung điểm BC \(\Rightarrow\) I là trung điểm EF \(\Rightarrow AI\) là trung tuyến tam giác AEF

\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AE}+\dfrac{1}{2}\overrightarrow{AF}\)

Theo tính chất trọng tâm:

 \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{2}{3}\left(\overrightarrow{AE}+\overrightarrow{AF}\right)=\dfrac{2}{3}\overrightarrow{AE}+\dfrac{2}{3}\overrightarrow{AF}\)

DE là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{DE}=\dfrac{1}{2}\overrightarrow{BA}=-\dfrac{1}{2}\overrightarrow{AB}=-\overrightarrow{AE}\) hay \(\overrightarrow{DE}=-\overrightarrow{AE}+0.\overrightarrow{AF}\)

D là trung điểm BC \(\Rightarrow\overrightarrow{DC}=\dfrac{1}{2}\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{DC}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{AC}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}=-\overrightarrow{AE}+\overrightarrow{AF}\)

Nguyễn Việt Lâm
9 tháng 9 2021 lúc 22:21

undefined

123ok
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2021 lúc 15:36

ABCD là hbh \(\Rightarrow\overrightarrow{AD}=\overrightarrow{BC}\)

Ta có:

\(\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{CB}+\overrightarrow{BD}\Rightarrow\overrightarrow{AD}-\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{BD}\)

\(\Rightarrow\overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{BD}\)

\(\Rightarrow2\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{BD}\)

\(\Rightarrow\overrightarrow{AD}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BD}=\dfrac{1}{2}\overrightarrow{a}+\dfrac{1}{2}\overrightarrow{b}\)

Hồng Phúc
26 tháng 8 2021 lúc 15:37

Gọi O là giao điểm của AC và BD.

\(\Rightarrow\vec{AD}=\vec{AO}+\vec{OD}=\dfrac{1}{2}\vec{AC}+\dfrac{1}{2}\vec{BD}=\dfrac{1}{2}\vec{a}+\dfrac{1}{2}\vec{b}\)

2moro
Xem chi tiết
Teendau
Xem chi tiết