Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiều Thuỷ Linh
Xem chi tiết
Nguyễn Quang Tùng
5 tháng 12 2016 lúc 21:08

giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho 

xét x^3 + xyz= 975 ta có

x^3 + xyz= x(x^2+yz)=975 => x là số lẻ

tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ

x là số lẻ => x^3 là số lẻ 

=> x^3+xyz là số chẵn 

trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho

vũ thị thanh
Xem chi tiết
Tina Linh yêu chị Linh K...
Xem chi tiết
Văn Thắng
25 tháng 9 2017 lúc 19:42

TH1:

Nếu x,y,z <0

thì (1),(2),(3) <0

TH2:

Nếu x,y,z >0

Thì(1),(2),(3)>0

TH3:

Nếu x,y,z =0

Thì (1),(2),(3)=0

Dương Thiên Thanh
Xem chi tiết
Cường Đào Tấn
Xem chi tiết
Lightning Farron
19 tháng 8 2016 lúc 14:08

Bài 1:

Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho

Xét x3+xyz=x(x2+yz)=579 -->x lẻ.

Tương tự xét

y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài

Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho

Bài 2:

Ta có: VP=1984

Vì 2x-2y=1984>0 =>x>y

=>VT=2x-2y=2y(2x-y-1)

pt trở thành:

2y(2x-y-1)=26*31 

\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)

Từ pt (1) =>y=6

Thay y=6 vào pt (2) đc:

2x-6-1=31 => 2x-6=32

=>2x-6=25

=>x-6=5 <=>x=11

Vậy x=11 và y=6

 

 

 

 

Dương Thiên Tuệ
Xem chi tiết
Big City Boy
Xem chi tiết
nguyễn hoàng linh
Xem chi tiết
Dương Đình	Huy
26 tháng 4 2020 lúc 8:39

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

Khách vãng lai đã xóa
Thanh Tùng DZ
26 tháng 4 2020 lúc 9:39

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Thanh Tùng DZ
26 tháng 4 2020 lúc 9:43

1 cách khác Engel nữa,

\(E=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a+b+c\right)^2=\left(\frac{a}{\sqrt{b+c}}.\sqrt{b+c}+\frac{b}{\sqrt{c+a}}.\sqrt{c+a}+\frac{c}{\sqrt{a+b}}.\sqrt{a+b}\right)^2\)

\(\le\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)\left(2a+2b+2c\right)\)

\(\Rightarrow E\ge\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

Vậy ....

Khách vãng lai đã xóa
Tạ Uyên
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:53

\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)

\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)

\(=x+\sqrt{xyz}\)

Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)

\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)