Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Trần Bảo An

Những câu hỏi liên quan
Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 14:34

Bài 4: 

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

ILoveMath
27 tháng 10 2021 lúc 14:42

undefined

\(TanB=\dfrac{AC}{AB}\Rightarrow Tan30^o=\dfrac{AC}{4,5}\Rightarrow AC=Tan30^o.4,5=\dfrac{3\sqrt{3}}{2}\left(m\right)\)

\(CosB=\dfrac{AB}{BC}\Rightarrow Cos30^o=\dfrac{4,5}{BC}\Rightarrow BC=Cos30^o.4,5=\dfrac{9\sqrt{3}}{4}\)

Chiều cao ban đầu của cây tre là: \(\dfrac{3\sqrt{3}}{2}+\dfrac{9\sqrt{3}}{4}=\dfrac{15\sqrt{3}}{4}\approx6,5\left(m\right)\)

 

Nguyễn Huỳnh Đổng Chi
Xem chi tiết
Nguyễn Huỳnh Đổng Chi
25 tháng 12 2022 lúc 13:38

loading...  

『Kuroba ム Tsuki Ryoo...
25 tháng 12 2022 lúc 16:33

loading...

*Hình như câu b mình chỉ thấy họ yêu cầu vẽ hình á, k thấy thêm gì nữa bạn ah.

minh phụng
Xem chi tiết
scotty
16 tháng 2 2022 lúc 21:51

b) Tách các cặp tính trạng riêng ra :

P:    AaBbDd              x               AaBBDd

->  (Aa x Aa) (Bb x BB) (Dd x Dd)

F1 : KG : (\(\dfrac{1}{4}\)AA : \(\dfrac{2}{4}\) Aa : \(\dfrac{1}{4}\) aa) ( \(\dfrac{1}{2}\) BB :\(\dfrac{1}{2}\) Bb) (\(\dfrac{1}{4}\)DD : \(\dfrac{2}{4}\) Dd : \(\dfrac{1}{4}\) dd )

      KH : (\(\dfrac{3}{4}\)trội : \(\dfrac{1}{4}\) lặn) ( 100% trội ) (\(\dfrac{3}{4}\)trội : \(\dfrac{1}{4}\) lặn)

b1)  Tỉ lệ biến dị tổ hợp ở đời con :

lặn, trội, lặn :  \(\dfrac{1}{4}\) x 1 x \(\dfrac{1}{4}\) = \(\dfrac{1}{16}\)

lặn, trội, trội :   \(\dfrac{1}{4}\) x 1 x \(\dfrac{3}{4}\) = \(\dfrac{3}{16}\)

b2) 

Tỉ lệ 5 gen trội đời con :

AABBDd :   \(\dfrac{1}{4}\) x \(\dfrac{1}{2}\) x \(\dfrac{2}{4}\) = \(\dfrac{1}{16}\)

AaBBDd : \(\dfrac{2}{4}\) x \(\dfrac{1}{2}\) x \(\dfrac{1}{4}\) = \(\dfrac{1}{16}\)

 

Bảo Ngọc
Xem chi tiết
Thao Le
Xem chi tiết
Phác Kiki
Xem chi tiết
Bình Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 23:36

Câu 2: 

Ta có: \(x^2-2\left(m+1\right)x+m^2+4=0\)

a=1; b=-2m-2; \(c=m^2+4\)

\(\text{Δ}=b^2-4ac\)

\(=\left(-2m-2\right)^2-4\cdot\left(m^2+4\right)\)

\(=4m^2+8m+4-4m^2-16\)

=8m-12

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow8m>12\)

hay \(m>\dfrac{3}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)=2m+2\\x_1x_2=m^2+4\end{matrix}\right.\)

Vì x1 là nghiệm của phương trình nên ta có: 

\(x_1^2-2\left(m+1\right)\cdot x_1+m^2+4=0\)

\(\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta có: \(x_1^2+2\left(m+1\right)x_2=2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2-2m^2-20=0\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-3m^2-24=0\)

\(\Leftrightarrow2\left(m+1\right)\cdot\left(2m+2\right)-3m^2-24=0\)

\(\Leftrightarrow4m^2+8m+4-3m^2-24=0\)

\(\Leftrightarrow m^2+8m-20=0\)

Đến đây bạn tự tìm m là xong rồi

Bùi Hải Hà My
Xem chi tiết
~$Tổng Phước Yaru😀💢$~
17 tháng 3 2022 lúc 15:54

Sai nha bạn

Khách vãng lai đã xóa

TL: 

Sai nhé bạn 

Bạn k cho mik cái đi nhé 

@@@@@@@@@@@@@@@@@ 

HT

Khách vãng lai đã xóa
Hoàng Ngân Hà
20 tháng 3 2022 lúc 18:54

Sai nha

#Bonnie @Ngân Hà

Khách vãng lai đã xóa
Hào
Xem chi tiết
missing you =
10 tháng 6 2021 lúc 20:12

câu 2 phần 2:

\(\left\{{}\begin{matrix}4x+3y=11\\4x-y=7\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}4y=4\\4x-y=7\end{matrix}\right.< =>\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\).Vậy hệ pt có nghiệm

(x,y)=(2;1)

caau3 phần 2:

\(x^2-2x+m-1=0\)(1)

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)

để pt (1) có 2 nghiệm x1,x2<=>\(\Delta'\ge0< =>2-m\ge0< =>m\le2\)

theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2\left(1\right)\\x1.x2=m-1\left(3\right)\end{matrix}\right.\)

có: \(x1^4\)\(-x1^3=x2^4-x2^3\)

\(< =>x1^4-x2^4-x1^3+x2^3=0\)

\(< =>\left(x1^2-x2^2\right)\left(x1^2+x2^2\right)-\left(x1^3-x2^3\right)\)\(=0\)

\(< =>\left(x1-x2\right)\left(x1+x2\right)\left[\left(x1+x2\right)^2-2x1x2\right]\)\(-\left(x1-x2\right)\left(x1^2+x1x2+x^2\right)=0\)

\(< =>\)\(\left(x1-x2\right)\left[2.2^2-2\left(m-1\right)-\left(x1^2+x1x2+x2^2\right)\right]=0\)

\(< =>.\left(x1-x2\right)\left[8-2m+2-\left(x1+x2\right)^2+x1x2\right]=0\)

<=>\(\left(x1-x2\right)\left[10-2m-4+m-1\right]=0\)

\(< =>\left(x1-x2\right)\left(5-m\right)=0\)

\(=>\left[{}\begin{matrix}x1-x2=0\\5-m=0\end{matrix}\right.< =>\left[{}\begin{matrix}x1=x2\left(2\right)\\m=5\left(loai\right)\end{matrix}\right.\)

thế(2) vào(1)=>\(x1=x2=1\left(4\right)\)

thế (4) vào (3)=>\(m-1=1=>m=2\left(TM\right)\)

vậy m=2 thì....