Tìm x€N,y€Z thỏa: (3xy+2x-y+5)(3x+4y-6)=5x(3x-2)+y(9x2+12xy-x+14)-40
Tìm x,y,z biết
1)2x=3y-2x và x+y=14
2)5x=4y+2y và x+y=-56
3)3x+2y=7y-3x và x-y=10
4)7x-2y=5x-3y và 2x+3y=20
5)2x=3y-2x=5z và x-y+z=99
6)5x-2y=4y=3z-4y và x+y-z=70
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
bài 5 đa thức N thỏa mãn điều kiện
a) (3x^5-4x^4+6x^3)=(-2x^2).N b) N.(-1/3x^2y^3)=6x^4y^5-3x^3y^4+1/2x^4y^3z c) x^3-3x^2y+3xy^2-y^3=N.(y-x) d) x^4-2x^2y^2+y^4=(y^2-x^2).N
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)
Tìm x; y; z biết:
1) 2x = 3y - 2x và x + y = 14
2) 5x = 4x + 2y và x + y = -56
3) 3x + 2y = 7y - 3x và x - y = 10
4) 6x - 2y = 3y - 4x và x + y = -99
5) 7x - 2y = 5x - 3y và 2x + 3y = 20
6) 4x - 3y = 7y - 6x và 2x + 3y = 55
7) 2x = 3y = 4z - 2y và x + y + z = 45
8) 5x = 2y = 4z + y và x + y + z = 66
9) 2x = 5y = 3z - 2x và x + y + z = 62
10) 3x = 4y = 2z - x và x + y + z = 60
11) 2x = 3y - 2x = 5z và x - y + z = 99
12) 3x = 2y - 3z = 4z và x + y - z = 46
13) 2x = 3y - 2x = 4z - 3x và x - y + z = 44
14) 5x - 2y = 4y = 3z - 4y và x + y - z = 70
15) 2x - 3z = 4y - 2z = 7z và x + y + z = -99
16) 2x = 3y - 2x = 5z - 3y và x + y + z = 53
17) 3x = 4y - 2x = 7z - 4y và x + y - 2z = 10
18) 3x = 2y - 4x = 5z - 4y và x - y + x = 36
19) 5x - 3y = 4y = 3z + 10x và x + y + z = 28
20) 4x - 3z = 6y - x = z và 2x + 3y + 4z = 19
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Tìm đa thức P, biết: a, P+ ( 3x^2-4xy )= 6y^2-9xy+x^2 b, ( 4y^2-8xy )-P=5x^2-12xy+4y^2 c, P- ( x^2-2y^2+3z^2 )+ ( 3x^2-y^2+2z^2 )=2x^2-3y^2-z^2
giải các hệ phương trình sau
a.{ x + 3y = -2
{ 5x - 4y = 11
b.{ 3xy = 5
{ 5x + 2y = 23
c.{ 3x +5y = 1
{ 2x - y = -8
d.{ x - 2y + 6 = 0
{ 5x - 3y - 5 = 0
e.{ 2(x + y) + 3(x - y) = 4
{ (x + y) + 2(x - y) = 5
\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
Tính giá trị biểu thức:
a) [ - 5 ( x - 4 y ) 3 + 7 ( x - 4 y ) 2 ]:2(4y - x) tại x = -2; y = - 1 2 ;
b) [ ( 3 x + 2 y ) 3 + 9 x 2 + 12xy + y 2 ]:(8y + 12x) tại x = 2 3 ; y = - 1 2 .
Tìm mẫu thức chung của các phân thức sau.
a , 25/ 14x^2y và 14/ 21xy^5
b , 1/10x^4y ; 5/ 8 x^2y^2z và 2/ 3xy^5
c , 3x + 1 /12xy^4z và y-2/9x^2 -y^3
d , 5/ 3x^3 - 12x và 3/ (2x+ 4)(x+3)
e, 7x - 1/2x^2 + 6x và 5-3x / x^2 -9
f, 1/ x^3 -1 ; 2/x^2+x+1 và 3/x-1
Quy đồng mẫu thức các phân thức sau :
a)