Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cát tường
Xem chi tiết
Thanh Tuyền
Xem chi tiết
trần hải bách
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 0:55

\(\dfrac{4x^2\left(y+z\right)^5}{2x\left(y+z\right)^3}=2x\left(y+z\right)^2\)

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:11

e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)

Linh Thuy
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
13 tháng 3 2021 lúc 7:27

\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)

    \(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)

BTVCONGANH
22 tháng 8 2023 lúc 17:37

gg

 

Lam Anh Nguyễn
Xem chi tiết
Truc Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2021 lúc 21:31

1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)

\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)

\(=\dfrac{1}{3}x^6y^{10}\)

2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)

\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)

\(=-\dfrac{9}{2}x^4y^4\)

3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)

\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)

\(=\dfrac{1}{54}x^7y^{14}\)

Ngọc Diễm Nguyễn
Xem chi tiết
Nguyễn thành Đạt
26 tháng 6 2023 lúc 20:04

Bài 1 :

Cách 1 : Dùng hằng đẳng thức : \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

Áp dụng hằng đẳng thức trên ta suy ra được : đpcm.

Cách 2 :

\(VT=\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\left(VP\right)\)

suy ra : đpcm.

Bài 2 :

Hình như sai đề rồi á bạn . Đáp án đúng phải là \(x^4-y^4\) á cậu.

Cách 1 : Ta biến đổi vế phải thành vế trái .

Ta có : \(VP=x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)\)

\(=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\left(VT\right)\)

Suy ra : đpcm.

Cách 2 : Bạn cũng có thể dùng hằng đẳng thức hoặc nhân bung vế trái ra á.

nguyenducquang
Xem chi tiết
⭐Hannie⭐
1 tháng 7 2023 lúc 11:08

\(2x^2y^3+5y^2x^3+\left(-\dfrac{1}{2}x^3y^2\right)+\left(-\dfrac{1}{2}x^2y^3\right)\\ =\left[2x^2y^3+\left(-\dfrac{1}{2}x^2y^3\right)\right]+\left[5x^3y^2+\left(-\dfrac{1}{2}x^3y^2\right)\right]\\ =\dfrac{3}{2}x^2y^3+\dfrac{9}{2}x^3y^2\)

Trần Mai Trang
Xem chi tiết