Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cao thái hải
Xem chi tiết
cao thái hải
Xem chi tiết
huhu
Xem chi tiết
2611
18 tháng 5 2022 lúc 23:03

`|x-2020|+|x-2021|=x-2022`

\begin{array}{|c|cc|}\hline x&-\infty & &2020&&2021&&+\infty\\\hline |x-2020|& &2020-x & 0&x-2020&|&x-2020\\\hline |x-2021|& &2021-x&|&2021-x&0&x-2021\\\hline\end{array}

`@` Với `x < 2020` khi đó ptr có dạng: 

   `2020-x+2021-x=x-2022`

`<=>-3x=-6063`

`<=>x=2021` (ko t/m)

`@` Với `2020 <= x < 2021` khi đó ptr có dạng:

    `x-2020+2021-x=x-2022`

`<=>-x=-2023`

`<=>x=2023` (ko t/m)`

`@` Với `x >= 2021` khi đó ptr có dạng:

    `x-2020+x-2021=x-2022`

`<=>x=2019` (ko t/m)

Vậy ptr vô nghiệm

12. Gia Minh 7B
Xem chi tiết
Nguyễn Huy Tú
11 tháng 5 2022 lúc 21:22

Ta có \(x+1=2022\)

\(P\left(x\right)=x^{101}-\left(x+1\right)x^{100}+...+\left(x+1\right)x-1\)

\(=x^{101}-x^{101}-x^{100}+...+x^2+x-1=x-1\)

-> P(x) = 2020 

Minh Ngọc
Xem chi tiết
Hồ Kim Ngọc
16 tháng 4 2023 lúc 10:02

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))

vậy x= 2023

Trần Trà My
Xem chi tiết
Tiếng anh123456
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2023 lúc 22:20

TH1: (x-2021)^2022=0 và |x-2022|^2022=1

=>x-2021=0 và (x-2022=1 hoặc x-2022=-1)

=>x=2021

TH2: (x-2021)^2022=1 và |x-2022|^2022=0

=>x-2022=0 và (x-2021=1 hoặc x-2021=-1)

=>x=2022

nga nguyen
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
17 tháng 9 2020 lúc 20:12

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)

=> x + 2020 = 0

=> x = -2020

Khách vãng lai đã xóa
Bellion
17 tháng 9 2020 lúc 20:15

            Bài làm :

Ta có :

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

 \(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy x=-2020

Khách vãng lai đã xóa
Ngô Chi Lan
11 tháng 3 2021 lúc 13:15

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\frac{x+1+2019}{2019}+\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}=\frac{x-1+2021}{2021}+\frac{x-2+2022}{2022}+\frac{x-3+2023}{2023}\)\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Khách vãng lai đã xóa
Đan Linh
Xem chi tiết
Trần Tuấn Hoàng
19 tháng 4 2022 lúc 9:40

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)

\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)

\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)

\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).

-Đến đây thôi bạn, câu hỏi sai rồi ạ.