Chứng tỏ rằng:
a) 0,(37) + 0,(62) = 1
b) 0,33 .3 = 1
Lm hộ mk nha. Tks
Cho hai phân số a/b và phân số a/c có b+c=a (a,b,c € Z, b khác 0, c khác 0).
Chứng tỏ rằng tích của hai phân số này bằng tổng của chúng. Thưt lại với a=8, b=-3.
Lm hộ mk nge. Ai nhanh mk tick. Ths
Chứng minh rằng :
a) 0, ( 37 ) + 0, ( 62 ) = 1
b) 0, ( 33 ) . 3 = 1
Giúp mk cái nha, mai mk phải nạp rồi
a) Ta có:
\(0,\left(37\right)=\frac{37}{99}\) ; \(0,\left(62\right)=\frac{62}{99}\)
=> \(0,\left(37\right)+0,\left(62\right)=\frac{37}{99}+\frac{62}{99}=\frac{99}{99}=1\)
b) Ta có:
\(0,\left(33\right)=\frac{33}{99}\)
=> \(0,\left(33\right).3=\frac{33}{99}.3=\frac{1}{3}.3=1\)
ta có 0,(37) + 0,(62)= 0,(99)
mà theo quy luận thì ta có thể viết 0,(99) ~ 1 (dpcm)
ta có 0,(33).3=0,(99)
mà theo quy luật ta có thể viết 0,(99)~1(dpcm)
chứng tỏ phân số n/n+1 tối giản
mong mọi người làm hộ
Cho đa thức : Q(x) = ax^2 + bx + c
a) Biết 5a + b+ 2c = 0. Chứng tỏ rằng Q(2).Q(-1) bé hơn hoặc = 0
b) Biết Q(x) = 0 với mọi x . Chứng tỏ rằng a = b = c= 0
a/
\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)
\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)
b/
Q(x) = 0 với mọi x, suy ra các điều sau:
\(\Rightarrow Q\left(0\right)=c=0\); \(Q\left(1\right)=a+b+c=a+b=0\); \(Q\left(-1\right)=a-b+c=a-b=0\)
\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)
Vậy \(a=b=c=0\)
Cho đa thức f(x) = ax2+bx+c . Biết 7a + b=0. Chứng tỏ rằng f(10). f(-3) ≥ 0
Vì 7a + b =0 nên b= -7a
Do đó : f(x) = ax2 + bx +c
= ax2 - 7ax +c
f(10) = 100a - 70a +c
=30a + c
f(-3) = 9a + 21a + c
= 30a +c
Vậy f(10).f(-3)= (30a + c ) 2 \(\ge\) 0
0,(37)+0,(62)
Các bạn làm cách giải cho mik nha
Đặt 0,(37) = A
100A = 37 + 0 ,(37)
99A = 37 + 0 ,(37) - 0,(37)
99A = 37
A = 37/99
DẶt B = 0,(62)
100B = 62 + 0,(62)
100 B - B = 62 + (0,62 )- 0,(62)
99B = 62
B = 62/99
A + B = 37/99 +62/99 = (37+62)/99 = 1
cho hàm số f(x)=ax^2+bx+c
chứng tỏ rằng f(-2);f(3) nhỏ hơn hoặc băng 0 biết 13a+b+2c=0
a,chứng tỏ rằng abab là bội của 101
b, chúng tỏ rằng 37 là ước của aaabbb
abab=ab.100+ab=ab.101 chia hết cho 101 nên là bội của 101
b) aaabbb=aaa.1000+bbb=a.111.1000+b.111=111(1000a+b) chia hết cho 37 ( vì 111 chia hết cho 37)
a)\(abab=ab\cdot100+ab\cdot1=ab\cdot101\)
Vì \(101⋮101\Rightarrow ab\cdot101⋮101\Rightarrow abab⋮101\)
=>abab là bội của 101
b)\(aaabbb=111000\cdot a+b\cdot111\)
Mà \(111000⋮37\)và\(111⋮37\)
\(\Rightarrow aaabbb⋮37\)
=>37 là ước aaabbb
a) Ta có: \(\overline{abab}=\overline{ab}.101⋮101\)
\(\Rightarrow\overline{abab}⋮101\)
b) Ta có: \(\overline{aaabbb}=a.111000+111.b=111.\left(1000.a+b\right)⋮37\) ( vì \(111⋮37\) )
\(\Rightarrow\overline{aaabbb}⋮37\)
Cho đa thức A(x)=ax2+bx+c
a) Chứng tỏ A(2).A(-1)<0 , biết 5a+b+2c=0
b) Cho A(x)=0 với mọi x . Chứng minh a=b=c=0
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?