Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Đào Vũ Long
Xem chi tiết
Trịnh Nhã Uyên
Xem chi tiết

a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau

    Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:

             \(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)

     ⇒  4n + 6 - (4n + 3) ⋮ d  ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d

     ⇒ d = 1; 3

Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì 

        2n + 3 không chia hết cho 3

        2n không chia hết cho 3

        n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)

       

              

Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 8:01

Bài 1:Tính cả ước âm thì là số `12`

Bài 2:

Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`

`=>7n+10 vdots d,5n+7 vdots d`

`=>35n+50 vdots d,35n+49 vdots d`

`=>1 vdots d`

`=>d=1`

`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.

Các phần còn lại thì bạn làm tương tự câu a.

Phạm Thái Dương
10 tháng 10 2021 lúc 14:15

Thanks,tui cũng đang mắc ở bài 2

Khách vãng lai đã xóa
help me
Xem chi tiết
Phan Phương Linh
Xem chi tiết
shitbo
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

shitbo
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Phan Phương Linh
21 tháng 11 2018 lúc 20:41

Thank you nha!

Dương Đình Hưởng
Xem chi tiết
Shiba Inu
4 tháng 1 2018 lúc 20:50

a, n = 0

b, n = 0

c, n = 3

d, n = 2

ĐÀO LÊ HƯƠNG LY
4 tháng 1 2018 lúc 22:32

n=0;n=0;n=3;n=2

Oops Channy
14 tháng 2 2018 lúc 19:15

a,n=0

b,n=0

c,n=3

d,n=2

Võ Thị Ngọc Linh
Xem chi tiết
Phạm Thái Dương
25 tháng 2 2017 lúc 19:40

a)1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24 = 3(3n+8) 
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b) 
Từ (a) và (b) => Mâu thuẫn 
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

b)Tương tự thôi,Số nguyên tố dễ mà,bạn tự tính nhé

NGUYỄN THẾ HIỆP
25 tháng 2 2017 lúc 19:46

a,Đặt: UC(9n+24,3n+4)=d

=> \(\hept{\begin{cases}9n+24⋮d\\3n+4⋮d\end{cases}\Rightarrow}9n+24-3\left(3n+4\right)⋮d\Leftrightarrow12⋮d\)

=> d=1,2,3,6,12

Xét thấy: 3n+4 không chia hết cho 3 nên => d\(\ne\)3,6,12 => d=1, 2

Để 9n+24 và 3n+4 nguyên tố cùng nhau <=>  9n+24 lẻ <=> 9n lẻ hay n lẻ

Vậy n lẻ thì 2 số nguyên tố cùng nhau

Cách 2: 

Xét n chẵn: => cả 2 số đều chẵn => không nguyên tố cùng nhau

Xét n lẻ: có 9n+24=3(3n+8)

Mặt khác 3n+4 không chia hết cho 3 => xét: 3n+8-(3n+4)\(⋮\)d hay 4\(⋮\)d

Mà n lẻ nên 2 số đều lẻ

=> d=1

Vậy n lẻ thì 2 số nguyên tố cùng nhau

b, Đặt: d=UC(4n+3,2n+3)

=> \(\hept{\begin{cases}4n+3⋮d\\2n+3⋮d\end{cases}\Rightarrow}2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\)

Vậy d=1 hoặc 3

Để d=1<=> 4n+3 không chia hết cho 3 <=> n không chia hết cho 3

Vậy với n không chia hết cho 3 thì 2 số nguyên tố cùng nhau

Nguyễn Huyền Trâm
21 tháng 4 2020 lúc 16:10

b, n ko chia hết cho3

Khách vãng lai đã xóa
Minh Son Nguyen
Xem chi tiết
Nguyễn Quang Tùng
14 tháng 12 2016 lúc 22:10

a, gọi ước chung lơn nhất của .... là d

4n+3 chia hết cho d

2n+ 3 chia hết cho d

=> 2(2n+3) chia hết cho d

=> 4n+5 chia hết cho d

=> (4n+5)-(4n+3) chia hết cho d

=> 2 chia hết cho d

=> d= 1,2

mà 2n+3 là số lẻ ( ko chia hết cho 2)

=> d= 1

vây ......

Nguyễn Duy Hậu
20 tháng 12 2020 lúc 11:14

sai đề bạn ơ

Khách vãng lai đã xóa
help me
Xem chi tiết
Akai Haruma
9 tháng 1 2023 lúc 19:04

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

Akai Haruma
9 tháng 1 2023 lúc 19:07

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$

Akai Haruma
9 tháng 1 2023 lúc 19:08

Bài 2:

b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.

Khi đó:

$ab=6x.6y=216$

$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$

$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$