CMR: 55n+1 - 55n chia hết cho 54 (n là số tự nhiên)
Chứng minh rằng 55n + 1 – 55n chia hết cho 54 (với n là số tự nhiên).
Có : 55n + 1 – 55n
= 55n.55 – 55n
= 55n(55 – 1)
= 55n.54
Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.
Vậy 55n + 1 – 55n chia hết cho 54.
Chứng minh rằng 55n + 1 – 55n chia hết cho 54 (với n là số tự nhiên).
Theo đề ra , ta có :
Có : 55n + 1 – 55n
= 55n . 55 – 55n
= 55n ( 55 – 1 )
= 55n . 54
Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n
Vậy 55n + 1 – 55n chia hết cho 54.
CM: 55n+1 - 55n \(⋮\) 54 ( n \(\in\)N )
`55^(n+1)-55^n = 55^n . 55 - 55^n`
`= 55^n . (55-1) = 55^n . 54 vdots 54 forall n`
CMR:
a/\(55^{n+1}-55n\) chia hết cho 54 với mọi\(x\in N\)
Ta có \(55^{n+1}-55^n=......................\)
b/\(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
Ta có:\(n^2\left(n+1\right)+2n\left(n+2\right)=.......\)
c/\(2^{n+2}+2^{n+1}+2^n\) chia hết cho 7,với mọi\(x\in N\).
Ta có:\(2^{n+2}+2^{n+1}+2^n=...\)
a)
\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)
b)
\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)
c)
\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
Chứng minh 55^(n + 1) - 55^2 chia hết cho 54 (với n là số tự nhiên)
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.
Bài 1:CMR với mọi q,p là số tự nhiên, thì:
a,105p+30q chia hết cho 5
b,105p+5q+1 chia cho 5 dư 1
Bài 2: CMR: (n2+n+1) ko chia hết cho 5 (n là số tự nhiên)
Bài 3:CMR trong hai số chẵn liên tiếp có một số chia hết cho 4.
\(CMR:\)1 số tự nhiên gồm toàn chữ số 2 thì chia hết cho 54
mình nghĩ chắc chẳng có số nào toàn chữ số 2 chia hết cho 54 đâu
chứng minh rằng 55^n+1-55^n chia hết cho 54 ( với n là số tự nhiên )
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n