cho a+b+c=0
chứng minh \(a^3+a^2c-abc+b^2c+b^3=0\)
cho a+b+c=0, chứng minh a^3+b^3+a^2c+b^2c-abc=0
ta có \(a^3+b^3+a^2c+b^2c-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)
mà a+b+c=0
\(\Rightarrow a^3+b^3+a^2c+b^2c-abc=\left(a^2-ab+b^2\right).0=0\left(đpcm\right)\)
cho a+b+c=0
chứng minh rằng a^3+a^2c-abc+b^2c+b^3=0
Ta có: a+b+c =0 => c= -a -b
Ta có a3 +a2c -abc + b2c +b3
= (a3 +b3) +c(a2 -ab +b2)
= (a3 +b3) +(-a -b)(a2 -ab +b2)
= (a3 +b3) -(a +b)(a2 -ab +b2)
= (a3 +b3) -a3 -b3 = 0
Vậy a3 +a2c -abc +b2c +b3 =0
cho a+b+c=0
chung minh \(a^3+a^2c-abc+b^2c+b^3=0\)0
nhanh tick
https://olm.vn/hoi-dap/detail/19699450579.html
Xem ở link này(mik gửi cho)
Học tốt!!!!!!!!!!!
a^3 + a^2c - abc + b^2c + b^3
= a^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a
= a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a
= -a^2b-abc-b^2a
= -ab(a+b+c)=-ab*0 = 0
vậy đa thức này bằng 0
a+b+c=0
a^3 + a^2c - abc + b^2c + b^3
=(a^3+a^2b+a^2c)-(a^2b+ab^2+abc)+(b^2c+b^3+ab^2)
=a^2(a+b+c)-ab(a+b+c)+b^2(a+b+c)
=0+0+0
=0
cho a + b + c = 0 cmr a^3 + b^3 + a^2c+b^2c-abc=0
Cho a + b + c = 0 . CM a^3 + a^2c-abc+b^2c+b^3 =0
Có : \(a^3+a^2c-abc+b^2c+b^3\)
= \(\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)
= \(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
= ( a+b+c) ( \(a^2-ab+b^2\)) mà a+b+c=0
=> \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)
Chứng minh nếu a+b+c=0 thì:
\(a^3+a^2c-abc+b^2c+b^3=0\)
\(a^3+a^2c-abc+b^2c+b^3=0\)
\(\Rightarrow a^2\left(a+c\right)-abc+b^2\left(b+c\right)=0\)
\(\Rightarrow-a^2b-abc-b^2a=0\)
\(\Rightarrow a^2b+abc+b^2a=0\)
\(\Rightarrow ab\left(a+b+c\right)=0\)(đúng)
a, cho a+b+c=0 chứng minh \(a^3+a^2c-abc+b^2c+b^3=0\)
b, phân tích đa thức thành nhân tử
A= bc(a+d)(b-c)-ac(b+d)(a-c)+ab(c+d)(a-b)
a:
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)(vì a+b=c=0)
câu b bn xem ở link này nha!
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)( vì a+b+c=0)
Vậy \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)
\(b,A=bc\left(a+d\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(a-b\right)\)
\(=bc\left(a+d\right)\left[\left(b-a\right)+\left(a-c\right)\right]-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\left(a-b\right)\)
\(=-bc\left(a+d\right)\left(a-b\right)+bc\left(a+d\right)\left(a-c\right)-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\left(a-b\right)\)
\(=b\left(a-b\right)\left[a\left(c+d\right)-c\left(a+d\right)\right]+c\left(a-c\right)\left[b\left(a+d\right)-a\left(b+d\right)\right]\)
\(=b\left(a-b\right)\cdot d\left(a-c\right)+c\left(a-c\right)\cdot d\left(b-a\right)\)
\(=d\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
cho a+b+c=0.Tnh A=\(a^3+a^2c-abc+b^2c+b^3\)
\(A=a^3+a^2c-abc+b^2c+b^3\\ =\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\\ =\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a^2-ab+b^2\right)c\\ =\left(a+b+c\right)\left(a^2-ab+b^2\right)\\ Thay\text{ }a+b+c=0,\text{ }ta\text{ }được:\text{ }\\ A=\left(a+b+c\right)\left(a^2-ab+b^2\right)\\ =0\cdot\left(a^2-ab+b^2\right)\\ =0\)
Vậy \(A=0\) tại \(a+b+c=0\)
cho a+b+c=0
CM \(a^3+a^2c-abc+b^2c+b^3=0\)
\(a^3+a^2c-abc+b^2c+b^3.\)
\(=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)
theo đề ta có \(a+b+c=0\)
\(\Rightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)\)
\(=\left(a^2-ab+b^2\right)\cdot0=0\)
\(\Rightarrow a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)
Bài làm
Ta có: \(a^3+a^2c-abc+b^2c+b^3\)
\(=a^3+b^3+\left(a^2c-abc+b^2c\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
Thay \(a+b+c=0\)và biểu thức trên ta được:
\(=0.\left(a^2-ab+b^2\right)\)
\(=0\)( đpcm )
~ Bài này khó v~, mất nửa tiếng ms nghĩ ra. ~
# Học tốt #