Có : \(a^3+a^2c-abc+b^2c+b^3\)
= \(\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)
= \(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
= ( a+b+c) ( \(a^2-ab+b^2\)) mà a+b+c=0
=> \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)
Có : \(a^3+a^2c-abc+b^2c+b^3\)
= \(\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)
= \(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
= ( a+b+c) ( \(a^2-ab+b^2\)) mà a+b+c=0
=> \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)
cho a+b+c=0.Tnh A=\(a^3+a^2c-abc+b^2c+b^3\)
Chứng minh nếu a+b+c=0 thì:
\(a^3+a^2c-abc+b^2c+b^3=0\)
Cho a,b,c >0 và abc = 1.
Tìm GTNN của P=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\)
Cho a,b,c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
Cho 3 số a,b,c thỏa a+b+c=0,tính:
K=a²(2a+b)+c²(2c+b)+b(b²-4ca)
Cho a,b,c>0. CM: \(\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\ge\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\)
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\) . CMR : \(\sqrt[3]{\dfrac{a}{b\left(b+2c\right)}}+\sqrt[3]{\dfrac{b}{c\left(c+2a\right)}}+\sqrt[3]{\dfrac{c}{a\left(a+2b\right)}\ge\dfrac{3}{\sqrt[3]{3}}}\)
Bài 1: Cho a,b,c là những số dương thỏa mãn: a+b+c=3
CMR: \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
Bài 2: Cho a, b, c thỏa mãn: ab+bc+ca=3
CMR: \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\ge1\)
Bài 3: Cho a, b, c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+3b\)
Dấu = xảy ra khi a=b=2c
Xét:
\(\dfrac{c}{a-b}.\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}=1+\dfrac{c}{a-b}.\dfrac{c\left(a-b\right)-\left(a^2-b^2\right)}{ab}=1+\dfrac{c}{a-b}.\dfrac{\left(c-a-b\right)\left(a-b\right)}{ab}=1+\dfrac{c^2-c\left(a+b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)
CMTT cộng theo vế:
\(BTCCM=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=\dfrac{6\left(a^3+b^3+c^3\right)}{3abc}\)
Mà Khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\) ( tự cm,ez)
Vậy \(BTCCM=3+6=9\left(đpcm\right)\)