Cho \(x,y\ge0\) thỏa mãn \(x+y=2\sqrt{3}.\)Tìm Max:
\(P=\left(x^4+1\right)\left(y^4+1\right)\)
cho x,y\(\ge0\) thỏa mãn \(x+y=2\sqrt{3}\)
tìm max của \(A=\left(1+x^4\right)\left(1+y^4\right)\)
ta có \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{\left(\sqrt{12}\right)^2}{4}=3\)
Mà \(\left(1+x^4\right)\left(1+y^4\right)=x^4+y^4+x^4y^4+1\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+x^4y^4+1\)
\(=\left(12-2xy\right)^2+x^4y^4-2x^2y^2+1\)(vì \(x+y=2\sqrt{3}=\sqrt{12}\))
\(=144-48xy+4x^2y^2+x^4y^4-2x^2y^2+1\)
\(=x^4y^4+2x^2y^2-48xy+145\)
\(=xy\left(x^3y^3+2xy-48\right)+145\le100\)Vì \(xy\le3\)
vậy A max=100
cho x,y là 2 số thực thỏa mãn \(2\left(x^2+y^2\right)+xy=1.\) tìm min và max của bth P=\(2\left(x^4+y^4+1\right)+\left(x+y\right)^2\)
\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)
Ta có:
P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)
P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)
=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)
Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)
Ta có :
P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)
Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)
<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)
=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)
\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)
Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...
Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)
<=> x=-y=\(\dfrac{1}{\sqrt{3}}\)
1.Cho x, y là các số thực không âm . Tìm Max của \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
2.cho a,b,c >0 thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).CMR \(abc\le\frac{1}{8}\)
3.Giải phương trình : \(x^3-4\sqrt[3]{4x-3}+3=0\)
4.Tìm x,y thỏa mãn \(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
5.Giải phương trình \(\left(2x^3-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
6.cho các số dương a , b , c thỏa mãn a+b+c = 4. CMR \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
7. Tìm Max của S = \(5x^2+9y^2-12xy+24x-48y+2016\)
8. Giải phương trình \(4\sqrt{x+1}=x^2-5x+14\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
1.Cho x, y là các số thực không âm . Tìm Max của \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
2.cho a,b,c >0 thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).CMR \(abc\le\frac{1}{8}\)
3.Giải phương trình : \(x^3-4\sqrt[3]{4x-3}+3=0\)
4.Tìm x,y thỏa mãn \(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
5.Giải phương trình \(\left(2x^3-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
6.cho các số dương a , b , c thỏa mãn a+b+c = 4. CMR \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
7. Tìm Max của S = \(5x^2+9y^2-12xy+24x-48y+2016\)
8. Giải phương trình \(4\sqrt{x+1}=x^2-5x+14\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
Câu 8 bn tìm cách tách thành
\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)
\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)
\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
cho x, y là hai số thực thỏa mãn (x - 4)2 + (y - 3)2 = 5 và biểu thức
Q=\(\sqrt{\left(x+1\right)^2+\left(y-3\right)^2}+\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\) đạt giá trị lớn nhất. Tìm P = x + y
Đặt \(\left\{{}\begin{matrix}x-4=a\\y-3=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=5\)
\(Q=\sqrt{\left(a+5\right)^2+b^2}+\sqrt{\left(a+3\right)^2+\left(b+4\right)^2}\)
\(\Rightarrow Q\le\sqrt{2\left[\left(a+5\right)^2+b^2+\left(a+3\right)^2+\left(b+4\right)^2\right]}\) (Bunhiacopxki)
\(\Rightarrow Q\le\sqrt{4\left(a^2+8a+b^2+4b+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(a^2+2.4a+b^2+2.2b+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(a^2+2\left(a^2+4\right)+b^2+2\left(b^2+1\right)+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(3a^2+3b^2+35\right)}\le\sqrt{4\left(3.5+35\right)}=10\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=4\end{matrix}\right.\)
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
Cho x,y là các số thực dương thỏa mãn đồng thời các điều kiên:
1) \(\left(x+2\right)\left(y+2\right)=3\left(x^2+y^2+\sqrt{xy}\right)\)
2) \(\left(\sqrt{x}+\sqrt{y}\right)^3=4\left(x^3+y^3\right)\)
CMR: \(\sqrt{x}+\sqrt{y}=2\)