Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn quốc trung
Xem chi tiết
nguyễn kim thương
11 tháng 5 2017 lúc 9:42

bạn tự vẽ hình nka !!!

a) , b) Theo định lí Py - ta - go trong   \(\Delta ABC\)vuông tại A , ta có : 

\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)

    Xét \(\Delta AHB\)và   \(\Delta CAB\)có :

\(\widehat{ABC}\)chung     ;        \(\widehat{BHA}=\widehat{BAC}=90\)độ

\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)

\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)

c) ta có :    \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\)   ( do AM là đường trung tuyến ứng với cạnh huyền BC )

  Theo định lí Py - ta - go trong   \(\Delta AHM\)vuông tại H , ta có : 

\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)

\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)

TK CKO MK NKA !!!

Trần Lê Hải Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 21:52

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

Trọng tâm Nguyễn
Xem chi tiết
Trọng tâm Nguyễn
10 tháng 11 2021 lúc 10:17

Giải nhanh giúp mình với

Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 10:20

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=7,5\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\\BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

Áp dụng PTG: \(HM=\sqrt{AM^2-AH^2}=2,1\left(cm\right)\)

Vậy \(S_{AHM}=\dfrac{1}{2}HM\cdot AH=\dfrac{1}{2}\cdot2,1\cdot7,2=7,56\left(cm^2\right)\)

 

Nguyễn Hoàng Quân
10 tháng 11 2021 lúc 10:23

Ai sẽ giúp m chứ??

Phạm Nguyễn Thúy Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

CHEAPYA FF
Xem chi tiết
CHEAPYA FF
14 tháng 2 2022 lúc 21:21

Ai làm hộ với

 

Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 21:24

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC∼ΔHBA

c: AH=4,8cm

BH=3,6cm

CH=6,4cm

Nguyễn Huy Tú
14 tháng 2 2022 lúc 21:25

undefined

Hhhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2023 lúc 10:16

a: BC=10cm

AH=6*8/10=4,8cm

BH=AB^2/BC=3,6cm

b: Vì BH vuông góc với AH tại H

nên CB là tiếp tuyến của (A'AH)

Linh Nguyễn
Xem chi tiết
乇尺尺のレ
24 tháng 5 2023 lúc 22:42

a, Xét ΔABC vuông tại A ta có:

\(BC^2=AB^2+AC^2\left(py-ta-go\right)\)

        \(=6^2+8^2\)

        \(=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

b, Xét ΔABC và ΔABH ta có:

\(\widehat{B}\) \(chung\)

\(\widehat{BAC}=\widehat{AHB}=90^0\)

→ΔABC ∼ ΔABH(g-g)

\(\rightarrow\dfrac{AB}{BH}=\dfrac{BC}{AB}\\ \rightarrow AB.AB=BH.BC\\ \Rightarrow AB^2=BH.BC\)

c, Vì \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\left(cmt\right)\)

\(hay\dfrac{6}{BH}=\dfrac{10}{6}\\ \Rightarrow BH=\dfrac{6.6}{10}=3,6\left(cm\right)\)

 

 

Xét ΔABC có AD là phân giác ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}hay\dfrac{6}{BD}=\dfrac{8}{CD}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{6}{BD}=\dfrac{8}{CD}=\dfrac{6+8}{10}=\dfrac{14}{10}=\dfrac{7}{5}\\ \Rightarrow BD=\dfrac{6.5}{7}=\dfrac{30}{7}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
24 tháng 5 2023 lúc 9:01

a: BC=căn 6^2+8^2=10cm

b: ΔABC vuông tại A có AH vuông góc BC

nên AB^2=BH*BC

c: BH=6^2/10=3,6cm

Luyện Thanh Mai
Xem chi tiết
Hồng Nhan
30 tháng 3 2021 lúc 17:21

A B C H D

Hồng Nhan
30 tháng 3 2021 lúc 17:25

a)

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

           \(\widehat{B}:chung\)

      \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)           \(\left(ĐPCM\right)\)

Hồng Nhan
30 tháng 3 2021 lúc 17:43

b)

Áp dụng định lý Py-ta-go cho tam giác vuông ABC. Ta có:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow15^2+20^2=BC^2\)

\(\Leftrightarrow BC=25\)

Ta có: \(\text{ΔABC ∼ ΔHBA }\)   (cm câu a)

\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}=\dfrac{AB}{BH}\)

⇔ \(\dfrac{AH}{AC}=\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

⇔ \(\dfrac{AH}{20}=\dfrac{15}{25}=\dfrac{BH}{15}\)

\(\Rightarrow\left\{{}\begin{matrix}AH=12\\BH=9\end{matrix}\right.\)

⇒ \(CH=BC-BH=25-9=16\)

Kiến Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 21:04

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 21:18

b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)

mà BE+CE=BC=5cm(gt)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)