a, Xét ΔABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\left(py-ta-go\right)\)
\(=6^2+8^2\)
\(=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
b, Xét ΔABC và ΔABH ta có:
\(\widehat{B}\) \(chung\)
\(\widehat{BAC}=\widehat{AHB}=90^0\)
→ΔABC ∼ ΔABH(g-g)
\(\rightarrow\dfrac{AB}{BH}=\dfrac{BC}{AB}\\ \rightarrow AB.AB=BH.BC\\ \Rightarrow AB^2=BH.BC\)
c, Vì \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\left(cmt\right)\)
\(hay\dfrac{6}{BH}=\dfrac{10}{6}\\ \Rightarrow BH=\dfrac{6.6}{10}=3,6\left(cm\right)\)
Xét ΔABC có AD là phân giác ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}hay\dfrac{6}{BD}=\dfrac{8}{CD}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{6}{BD}=\dfrac{8}{CD}=\dfrac{6+8}{10}=\dfrac{14}{10}=\dfrac{7}{5}\\ \Rightarrow BD=\dfrac{6.5}{7}=\dfrac{30}{7}\left(cm\right)\)
a: BC=căn 6^2+8^2=10cm
b: ΔABC vuông tại A có AH vuông góc BC
nên AB^2=BH*BC
c: BH=6^2/10=3,6cm