Cho các số dương a,b,c,d. CMR: \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{4}{c}\)+\(\frac{16}{d}\)luôn lớn hơn hoặc bằng \(\frac{64}{a+b+c+d}\)
Với các số dương a,b,c,d sao cho\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}=1.\)CM: abcd nhỏ hơn hoặc bằng 1/81
\(1-\frac{a}{a+1}=\frac{1}{1+a}=\frac{c}{c+1}+\frac{b}{b+1}+\frac{d}{d+1}\Rightarrow\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)
cmtt rồi nhân 3 cái lại vs nhau => đpcm
Cho các số dương a,b,c,d. CMR: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)
áp dụng bất đẳng thức Cauchy-schwaz
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}\)=\(\frac{16}{a+b+c+d}\)(đpcm)
Cho a,b,c là các số thực dương và a+b+c=1. CMR
\(\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\) lớn hơn hoặc bằng \(\frac{3}{4}\)
thay c=c.1=c(a+b+c)
=> ab+c=(c+a)(c+b)
lm tt cuối cùng sẽ ra
cho a,b,c>0
Đặt H=\(\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
CMR: số lớn nhất trong 3 số a,b,c luôn lớn hơn hoặc bằng H
tham khảo thui nhé, chưa tìm đc lời giải phù hợp :'<
+) Với 3 số a,b,c đều lớn nhất ( a=b=c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a=H\) (1)
+) Không mất tính tổng quát, với a và b là số lớn nhất ( a=b>c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{2}{a}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (2)
+) Không mất tính tổng quát, với a là số lớn nhất ( a>b, a>c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (3)
(1), (2) và (3) \(\Rightarrow\)\(a\ge H\) với a là số lớn nhất hoặc 1 trong các số lớn nhất ( tương tự với b và c )
Với mọi số dương a,b,c,d CMR
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\) > hoặc bằng 2
A=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\right)\)\(\ge4\)
B=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{c}{b+c}+\frac{d}{c+b}+\frac{a}{d+a}+\frac{b}{a+b}\right)\)\(\ge4\)
A+B=2M+2\(\ge\)8 (M là biểu thức cần chứng minh)
M\(\ge\)2 <=>a=b=c=d
Ta có
\(\frac{a}{b+c}\ge\frac{a+a+d}{a+b+c+d}\)
\(\frac{b}{c+d}\ge\frac{b+b+a}{a+b+c+d}\)
\(\frac{c}{d+a}\ge\frac{c+c+b}{a+b+c+d}\)
\(\frac{d}{a+b}\ge\frac{d+d+c}{a+b+c+d}\)
=> \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)> \(\frac{a+a+d+b+b+a+c+c+b+d+d+c}{a+b+c+d}\)=\(\frac{2a+2b+2c+2d}{a+b+c+d}\)= 2
Chúc bạn học tốt!
phân số bé hơn 1 ,khi công vào tử và mâu cùng một số thì được phân sô lớn hơn phân số ban đâu .Còn phân sô lớn hơn một thì ngược
lại Bạn chú y nha.
Cho các số dương a;b;c;d
CMR: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le2.\)
Đề sai rồi
Nếu giả sử a = b =c = d = 2 thì
\(\frac{2}{2+1}+\frac{2}{2+1}+\frac{2}{2+1}+\frac{2}{2+1}=\frac{8}{3}>2\)
Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Bunyakovsky dạng phân thức
Theo bất đẳng thức Svacxo :
\(VT\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{4}\)
Vậy ta có điều phải chứng minh
Cho các số dương a, b, c, d thỏa mãn điều kiện a^2+b^2=1 và \(\frac{a^4}{b}+\frac{c^4}{d}=\frac{1}{b+d}\)
CMR \(\frac{a^{2006}}{b^{1003}}+\frac{c^{2006}}{d^{1003}}=\frac{2}{\left(b+d\right)^{1003}}\)
cho a,b,c,d > 0
cm: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{64}{a+b+c+d}\)
Áp dụng BĐT Cauchy -Schwarz dạng cộng mẫu thôi:
\(\text{VT}=\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\geq \frac{(1+1+2+4)^2}{a+b+c+d}=\frac{64}{a+b+c+d}=\text{VP}\)
Dấu bằng xảy ra khi \(a=b=\frac{c}{2}=\frac{d}{4}>0\)
áp dụng BĐT cauchy-schwazs:
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)
dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{2}{c}=\frac{4}{d}\Leftrightarrow a=b=\frac{c}{2}=\frac{d}{4}\)