Số gt của x thỏa mãn:
\(\left(x^2-2x\right)\left|3x-7\right|=0\)
Aj trc mk k ckoa nkoa!^^
Tìm x:
\(\left(\frac{1}{2}-\frac{1}{3}\right)\cdot6^{x+1}+6^{x+1}=7\cdot6^9\)
Lạ nhỉ! Gửi câu tl mãi mà k thấy hiển thị s v ta! Aj tl trc bb k ckoa nka!
\(\left(\frac{1}{2}-\frac{1}{3}\right).6^{x+1}+6^{x+1}=7.6^9\)
\(\Rightarrow\frac{1}{6}.6.6^x+6.6^x=7.6^9\)
\(\Rightarrow6^x+6.6^x=7.6^9\)
\(\Rightarrow6^x.\left(1+6\right)=7.6^9\)
\(\Rightarrow6^x=\frac{7.6^9}{7}=6^9\)
\(\Rightarrow x=9\)
\(\left(\frac{1}{2}-\frac{1}{3}\right).6^{x+1}+6^{x+1}=7.6^9\)
\(\Leftrightarrow\frac{1}{6}.6^{x+1}+6^{x+1}=7.6^9\)
\(\Leftrightarrow6^{x+1}.\left(\frac{1}{6}+1\right)=7.6^9\)
\(\Leftrightarrow6^{x+1}.\frac{7}{6}=7.6^9\)
\(\Leftrightarrow6^{x+1}=7.6^9:\frac{7}{6}\)
\(\Leftrightarrow6^{x+1}=7.6^9.\frac{6}{7}\)
\(\Leftrightarrow6^{x+1}=\left(7.\frac{6}{7}\right).6^9\)
\(\Leftrightarrow6^{x+1}=6.6^9\)
\(\Leftrightarrow6^{x+1}=6^{10}\)
\(\Leftrightarrow x+1=10\)
\(\Leftrightarrow x=9\)
88+42=?
Ai trc mk k ckoa nkoa! Và nhớ k ckoa mk dok!^^
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
tập nghiệm của bất pt
a) \(\left|4x-8\right|\le8\)
b) \(\left|x-5\right|\le4\). (số nghiệm nguyên|)
c) \(\left|2x+1\right|< 3x\) ( giá trị nguyên x thỏa mãn [-2017;2017]
d) \(\left|x+1\right|+\left|x\right|< 3\)
e) \(\left|2-x\right|+3x-1\le6\)
a, \(\left|4x-8\right|\le8\)
\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)
\(\Leftrightarrow16x^2-64x+64\le64\)
\(\Leftrightarrow16x^2-64x\le0\)
\(\Leftrightarrow16x\left(x-4\right)\le0\)
\(\Leftrightarrow0\le x\le4\)
b, \(\left|x-5\right|\le4\)
\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)
\(\Leftrightarrow x^2-10x+25\le16\)
\(\Leftrightarrow x^2-10x+9\le0\)
\(\Leftrightarrow1\le x\le9\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
c, \(\left|2x+1\right|< 3x\)
TH1: \(x\ge-\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow2x+1< 3x\)
\(\Leftrightarrow x>1\)
\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
TH2: \(x< -\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow-2x-1< 3x\)
\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)
Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
d, \(\left|x+1\right|+\left|x\right|< 3\)
\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)
\(\Leftrightarrow\left|x^2+x\right|< 4-x\)
Xét hai trường hợp để phá dấu giá trị tuyệt đối
e, Tương tự câu d
Chứng minh rằng: nếu pt \(x^2+px+q=0\) có một nghiệm gấp \(k\) lần một nghiệm của pt \(x^2+mx+n=0\) thì các hệ số \(m,n,p,q\) thỏa mãn hệ thức sau:
\(\left(q-k^2n\right)^2+k\left(p-mk\right)\left(knp-qm\right)=0\)
với x;y là số thực thỏa mãn các đ/k 0< x </ y</ 2 , 2x + y >/ 2xy . Tìm GTLN của bt:
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
1. giá trị của x để 49x2 - 28x + 21 đạt giá trị nhỏ nhất
2. nghiệm của phương trình: (2x-3)2 - 4x2 - 279 = 0
3. Gía trị lớn nhất của: -3x2 - 6x - 4
4. giá trị của x <0 sao cho: (x+1)2 - 4 = 0
5. giá trị của x >0 thỏa mãn: x2 - 12 = 0
6. giá trị của x+y biết x-y=4 , xy=5 và x>0
7. giá trị của x thỏa mãn: 3x2 + 7 = (x+2)(3x+1)
8. giá trị của x biết: (2x+1)2 - 4(x+2)2 = 9
9. giá trị của biểu thức biết \(A=\frac{3\left(x+y\right)^2}{3\left(x-y\right)^2}\)và \(xy=\frac{1}{2}\)
10. Nghiệm của phương trình: \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\sqrt{2}\right)\left(2\sqrt{2}\right)-x=-3\)
5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)
Mà x>0\(\Rightarrow x=\sqrt{12}\)
6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)
Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)
Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6
7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)
\(3x^2+7=3x^2+7x+2\)
\(3x^2+7-3x^2-7x-2=0\)
-7x+5=0
-7x=-5
\(x=\frac{5}{7}\)
8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)
(2x+1-2x-4)(2x+1+2x+4)=9
-3(4x+5)=9
4x+5=-3
4x=-8
x=-2
Còn câu 9 và 10 để mình nghiên cứu đã
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
BÀI 1. TÌM x
ĐÂY LÀ BÀI NHÂN ĐA THỨC VỚI ĐA THỨC
a>\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
b> \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
c> \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\)
BÀI 2. TÍNH GIÁ TRỊ BIỂU THỨC
a> \(A=\left(x-3\right)\left(x+7\right)-\left(2x-5\right)\left(x-1\right)\)VỚI x=0 ; x=1 ;x= -1
b> \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x+1\right)\left(3x+2\right)\)VỚI | x | =2
c> \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\)VỚI x=1 ; y=1 ; |z|=1
BÀI 3. TÌM BA SỐ TỰ NHIÊN LIÊN TIẾP , BIẾT TÍCH HAI SỐ ĐẦU NHỎ HƠN TÍCH CỦA HAI SỐ SAU LÀ 50
MIK ĐANG CẦN GẤP