Cho A B C là Các Số Thực Dương thoả mãn A+b+c=6
Cho các số thực dương a, b, c thoả mãn a + b + c = 6. Tìm min A = \(\dfrac{a^2}{a+b}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+c}\)
Áp dụng BĐT bunhiacop ski dạng phân thức(cauchy schwart)
`=>A>=(a+b+c)^2/(a+b+b+c+a+c)`
`<=>A>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2`
Mà `a+b+c=6`
`=>A>=6/2=3`
Dấu "=" xảy ra khi `a=b=c=2`
Câu hỏi của Thu Nguyễn - Toán lớp 9 - Học trực tuyến OLM
tham khảo ^^
Cho a, b, c là các số thực dương thoả mãn \(a^2+b^2+c^2+abc=4\)
Chứng minh rằng: \(b+c\le2\sqrt{2-a}\)
Cho a,b,c là các số thực dương thoả mãn a+b+c=1
CMR (a+bc)/(b+c)+(b+ca)/(c+a)+(c+ab)/(a+b) >=2
Cho a, b, c là các số thực dương thoả mãn:
\(a+b+c=3\)
và \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=6\)
Tính giá trị của biểu thức: \(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}\)
- Theo BĐT Cauchy ta có:
\(\sqrt{a.1}\le\dfrac{a+1}{2}\)
\(\sqrt{b.1}\le\dfrac{b+1}{2}\)
\(\sqrt{c.1}\le\dfrac{c+1}{2}\)
\(\sqrt{ab}\le\dfrac{a+b}{2}\)
\(\sqrt{bc}\le\dfrac{b+c}{2}\)
\(\sqrt{ca}\le\dfrac{c+a}{2}\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3.3+3}{2}=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Mà ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=6\)
\(\Rightarrow a=b=c=1\)
\(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2023}}=1\)
Cho a b c là các số thực dương thoả mãn 1/a +1/b +1/c =3 tìm max P =
Cho a,b,c là các số thực dương thoả mãn : a/b=b/c=c/a
Tính S= (4a-5b+2019c)/(5a-5b+2020c)
ta co: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)
=> a = b = c
\(\Rightarrow S=\frac{4a-5b+2019c}{5a-5b+2020c}=\frac{4a-5a+2019a}{5a-5a+2020c}=\frac{2018a}{2020a}=\frac{1009}{1010}\)
ta co: a/b=b/c=c/a = (a+b+c)/(b+c+a) = 1
=> a/b = 1 => a = b
b/c = 1 => b = c
=> a = b = c
\(\Rightarrow S=\frac{4a-5a+2019a}{5a-5a+2020a}=\frac{2018a}{2020a}=\frac{1009}{1010}.\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\text{Suy ra :}\)
\(\frac{a}{b}=1\Leftrightarrow a=b\)(1)
\(\frac{b}{c}=1\Leftrightarrow b=c\)(2)
\(\text{Từ (1) và (2) suy ra }:\): \(a=b=c\)
\(S=\frac{4a-5b+2019c}{5a-5b+2020c}=\frac{4a-5a+2019a}{5a-5a+2020a}=\frac{2018a}{2020a}=\frac{1009}{1010}\)
>Chúc bạn học tốt<
Cho các số thực dương a,b,c thoả mãn a + b + c = 3. tìm giá trị lớn nhất của P = √a+b + √b+c + √c + a
Ta có:
\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\)
\(=6\left(a+b+c\right)=18\)
Suy ra \(P\le3\sqrt{2}\)
Dấu \(=\) xảy ra khi \(a=b=c=1\).
Cho a b c là các số thực dương thoả mãn 1/a +1/b + 1/c =1 cmr (a-1)(b-1)(c-1)=< 1/8 (a+1)(b+1)(c+1)
omgggggggggggggomgomgomgggomggomgo
cho các số thực dương a,b,c thoả mãn: 2/b = 1/a + 1/c. Tìm GTNN của biểu thức: P= \(\dfrac{a+b}{2a-b}\) + \(\dfrac{c+b}{2c-b}\)
Ta có: \(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Rightarrow bc+ca=2ca\)
\(P=\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}=\dfrac{ac+bc}{2ca-bc}+\dfrac{ca+ab}{2ca-ab}\)
\(=\dfrac{ca+bc}{ab}+\dfrac{ca+ab}{bc}=\dfrac{c}{b}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{c+a}{b}+\dfrac{c}{a}+\dfrac{a}{c}\)
Ta có :
\(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\left(\text{Svácxơ}\right)\)\(\Rightarrow c+a\ge2b\)
Áp dụng bđt cô si cho 2 số dương
\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{c}{a}.\dfrac{a}{c}}=2\)
\(\Rightarrow P\ge\dfrac{2b}{b}+2=4\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)