tìm GTNN
M=x(x-6)+74
tìm GTNN
M=x(x-6)+74
\(M=x\left(x-6\right)+74\)
\(M=x^2-6x+74\)
\(M=x^2-6x+9+65\)
\(M=\left(x-3\right)^2+65\ge65\)
Vậy \(B_{min}=65\)
Tìm GTNN hoặc GTLN trong biểu thức sau \(x\left(6-x\right)+74+x\)
A = x( 6 - x ) + 74 + x
A = 6x - x2 + 74 + x
A = - x2 + 7x + 74
A = - ( x2 - 7x - 74 )
A = - [ x2 - 2 . 7 / 2 + ( 7 / 2 )2 - ( 7 / 2 )2 - 74 ]
A = - ( x - 7 / 2 )2 - 345 / 2 \(\le\)- 345 / 2
Dấu= xảy ra \(\Leftrightarrow\)x - 7 / 2 = 0
\(\Rightarrow\)x = 7 / 2
Vậy : Max A = - 345 / 2 \(\Leftrightarrow\)x = 7 / 2
\(x\left(x-6\right)+74+x\)
\(=x^2-6x+74+x\)
\(=x^2-5x+74\)
\(=\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{271}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{271}{4}\ge\frac{271}{4}\)
Dấu '' = '' xảy ra
\(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy..................
P/s : chưa kt lại bài nên sai bỏ qua
e tưởng\(\le\frac{-345}{4}\)
Tìm GTNN của
A=\(\frac{x\left(x-6\right)+74}{13}\)
\(A=\frac{x\left(x-6\right)+74}{13}=\frac{x^2-6x+74}{13}=\frac{\left(x^2-6x+9\right)+65}{13}=\frac{\left(x-3\right)^2}{13}+\frac{65}{13}\ge\frac{65}{13}\)
Dấu "=" xảy ra tại \(x=3\)
\(A=\frac{x\left(x-6\right)+74}{13}=\frac{x^2-6x+9+65}{13}=\frac{\left(x-3\right)^2+65}{13}=\frac{\left(x-3\right)^2}{13}+5\)
Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\frac{\left(x-3\right)^2}{13}\ge0\)\(\Rightarrow A\ge5\)
Dấu bằng xảy ra khi \(x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(minA=5\Leftrightarrow x=3\)
tìm giá trị nhỏ nhất của M=x(x-6)+74
\(M=x\left(x-6\right)+74=x^2-6x+74=\left(x^2-6x+9\right)+65=\left(x-3\right)^2+65\ge65\)
\(minM=65\Leftrightarrow x=3\)
\(M=x\left(x-6\right)+74\)
\(=x^2-6x+9+65\)
\(=\left(x-3\right)^2+65\ge65\forall x\)
Dấu '=' xảy ra khi x=3
tìm giá trị lớn nhất của M \(=x\left(6-x\right)+74+x\)
M = x(6 - x) + 74 + x
M = 6x - x2 + 74 + x
M = 74 + 7x - x2
M = 345/4 - 49/4 + 7/2x + 7/2x - x2
M = 345/4 - 7/2.(7/2 - x) + x.(7/2 - x)
M = 345/4 - (7/2 - x)2 \(\le\frac{345}{4}\)
Dấu "=" xảy ra khi (7/2 - x)2 = 0
<=> 7/2 - x = 0
<=> x = 7/2
Vậy Max M = 345/4 khi x = 7/2
Tìm GTNN của biểu thức M= \(\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)Áp dụng Cô si có
\(M\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=10\)
Dấu "=" \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\leftrightarrow x=4\)
Vậy GTNN của M = 10 <=> x = 4
\(M=\dfrac{\left(x+6\sqrt{x}+9\right)+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)
Do \(\sqrt{x}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+3>0\\\dfrac{25}{\sqrt{x}+3}>0\end{matrix}\right.\)
Áp dụng bđt cô-si ta có:
\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)
hay \(M\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)
Vậy GTNN của M = 10 khi x = 4
\(\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x+3}}\)
=\(\dfrac{\sqrt{x}+2.3.\sqrt{x}+3^2+25}{\sqrt{x}+3}\)
=\(\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}\)
=\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)
áp dụng cosi
M≥\(^2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}\)=10
\(\sqrt{x}+3\)=\(\dfrac{25}{\sqrt{x}+3}\)⇔x=4
vậy...
cho hệ PT \(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=-m^2+6\end{matrix}\right.\)\(\hept{\begin{cases}x+y=m\\x^2+y^2=-m^2+6\end{cases}}\)
( m là tham số )tìm m để hệ có nghiêm (x,y) sao cho P=xy+2(x+y) đạt GTNN. tìm GTNN đó
Ta có:
\(\hept{\begin{cases}x+y=m\\x^2+y^2=-m^2+6\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=m\\\left(x+y\right)^2-2xy=-m^2+6\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=m\\xy=m^2-3\end{cases}}}\)
Suy ra:
\(P=xy+2\left(x+y\right)=m^2-3+2m=\left(m^2+2m+1\right)-4=\left(m+1\right)^2-4\ge-4\)
Vậy GTNN của P là -4 khi m = -1.
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
Tìm GTNN của biểu thức sau
M = (x+1)(x-2)(x-3)(x-6)
\(M=\text{(x+1)(x-2)(x-3)(x-6)}\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
\(=\left(x^2-5x\right)^2-6^2=\left(x^2-5x\right)^2-36\ge-36\)( Vì \(\left(x^2-5x\right)^2\ge0\))
Vậy \(MinM=-36\Leftrightarrow\left(x^2-5x\right)^2=0\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
M=(x+1)(x-2)(x-3)(x-6)
=(x2−5x−6)(x2−5x+6)
=(x2−5x)2−62=(x2−5x)2−36≥−36( Vì (x2−5x)2≥0)
Vậy MinM=−36⇔(x2−5x)2=0⇔x2−5x=0⇔x(x−5)=0⇔[
x=0 |
x−5=0 |
⇔[
x=0 |
x=5 |