Chứng minh các đẳng thức sau
a(b-c)-b(a+c)+c(a-b)=-2bc
Chứng minh các đẳng thức sau:
a) a(b -c) - b(a + c) + c(a -b)= -2bc
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\)
\(=ab-ac-ba-bc+ca-cb=-2bc\)
a(b-c)-b(a+c)+c(a-b)=ab-ab-bc-ac+ac-bc=-2bc
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\)
\(=ab-ac-ba-bc+ca-cb\)
\(=\left(ab-ba\right)+\left(-ac+ca\right)+\left(-bc-cb\right)\)
\(=0+0-2bc\)
\(=-2bc\)
Vậy \(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=-2bc\).
Học tốt
Bài 4: Chứng minh các đẳng thức sau
a) a.(b-c)-b.(a+c)+c.(a-b)=-2bc
b) a.(1-b)+a.(a2-1)=a.(a2-b)
c) a.(b-x)+x.(a+b)=b.(a+x)
a/
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)
\(=ab-ac-ab-bc+ac-bc=-2bc\)
b/
\(a\left(1-b\right)+a\left(a^2-1\right)=\)
\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)
c/
\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)
\(=ab+bx=b\left(a+x\right)\)
chứng minh đẳng thức
a) a(b- c)- b(a+ c)+ c(a- b)= -2bc
b)a(1- b)+ a(a2- 1)= a ( a2 -b)
a) VT: a(b - c) - b(a + c) + c(a - b)
= ab - ac - ab - bc + ac - bc
= -2bc
Vậy a(b - c) - b(a + c) + c(a - b) = -2bc.
b) VT: a(1 - b) + a(a2 - 1)
= a - ab + a3 - a
= a3 - ab
= a(a2 - b)
Vậy a(1 - b) + a(a2 - 1) = a(a2 - b).
Cho 3 số thực a, b, c thỏa mãn a + b + c ≤ 1. Chứng minh bất đẳng thức: 1/(a^2 + 2bc) + 1/(b^2 + 2ca) + 1/(c^2 + 2ab) ≥ 9
3 số thực dương nhé.
Áp dụng bất đẳng thức Cauchy Schwarz dạng Engel có :
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{1}{a^2+2bc}=\frac{1}{b^2+2ca}=\frac{1}{c^2+2ab}\)và \(a+b+c=1\)
\(\Leftrightarrow a^2+2bc=b^2+2ca=c^2+2ab\)
Mong có ai giúp mình từ đẳng thức trên giải ra a=b=c.
a=b=c ket hop voi a+b+c=<1 =>a=b=c=1/3 nhe
\(a^2+2bc=b^2+2ca=c^2+2ab\)
Ta có: \(\hept{\begin{cases}a^2+2bc=b^2+2ca\\b^2+2ca=c^2+2ab\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b\right)-2c\left(a-b\right)=0\\\left(b-c\right)\left(b+c\right)-2a\left(b-c\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b-2c\right)=0\\\left(b-c\right)\left(b+c-2a\right)=0\end{cases}}\)
Tới đây thì suy được ra là \(a=b=c\) rồi nhé Trần Thùy Dung - Trang của Trần Thùy Dung - Học toán với OnlineMath
Cho a+b+c = 2p . Chứng minh rằng đẳng thức : \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=2p\left(a+b+c-2a\right)\)
\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)
biến đổi vế phải ta được:
4p(p -a ) = 4p\(^2\)-4pa
=(2p)\(^2\)-2p.2a
=(a+b+c)\(^2\)-2a(a+b+c)
=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)
=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)
Chứng minh đẳng thức :
a)(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=ab+bc+ca-x2 .Biết 2x=a+b+c
b)2bc+b2+c2-a2=4p(p-a) .Biết a+b+c=2p
Cho a+b+c= 2p. Chứng minh hằng đẳng thức
2bc + b2 + c2 -a2 = 4p(p-a)
a+b+c = 2p => 4p = 2(a+b+c); p=(a+b+c)/2
VP = 4p(p-a) = 2(a+b+c)(\(\frac{a+b+c}{2}-a\))
= \(2\left(a+b+c\right)\left(\frac{a+b+c-2a}{2}\right)\)
=\(2\left(a+b+c\right)\cdot\frac{b+c-a}{2}=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\) = VT (đpcm)
Chứng minh các hằng đẳng thức sau :
Nếu a + b + c = 2m thì 4m(m - a ) = b2 + c2 - a2 - 2bc
Cho a + b + c = 2p. Chứng minh đẳng thức
2bc + b2 + c2 - a2 = 4p( p- a)
\(2bc+b^2+c^2-a^2.\)'
\(=\left(2bc+b^2+c^2\right)-a^2.\)
\(=\left(b+c\right)^2-a^2\)
Theo đề ta có \(a+b+c=2p\)
\(\Rightarrow b+c=2p-a\)
\(\Rightarrow\left(b+c\right)^2-a^2\)
\(=\left(b+c+a\right)\left(b+c-a\right)\)
\(=\left(2p-a+a\right)\left(2p-a-a\right)\)
\(=2p\left(2p-2a\right)\)
\(=2p\cdot2\left(p-a\right)=4p\left(p-a\right)\)
\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)
2bc + b2 + c2 - a2
= ( b2 + 2ab + c2 ) - a2
= ( b + c )2 - a2
= ( b + c - a )( b + c + a ) (*)
Từ gt a + b + c = 2p => b + c = 2p - a
Thế vào (*) ta được
( 2p - a - a )( 2p - a + a )
= ( 2p - 2a )2p
= 4p2 - 4pa
= 4p( p - a ) ( đpcm )