\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=-2bc\)
\(VT=ab-ac-ab-bc+ac-bc=-2bc=VP\)
Vậy ta có đpcm
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=-2bc\)
\(VT=ab-ac-ab-bc+ac-bc=-2bc=VP\)
Vậy ta có đpcm
Cho a + b + c = 2p. Chứng minh đẳng thức
2bc + b2 + c2 - a2 = 4p( p- a)
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :Bài 5: Chứng minh đẳng thức sau:
a,(a+b)² + (a-b)²=2(a²+b²)
b,(a+b+c)=a²+b²+c²+2ab+2ac+2bc
Bài 6: Sử dụng hằng đẳng thức để tính nhanh giá trị biểu thức:
A=x²-y² tại x=87 và y=13
B=25x²-30x+9 tại x=2
C=4x²-28x+49 tại x=4
Chứng minh bất đẳng thức:
\(\frac{a^2}{4}+b^2+c^2>=ab-ac+2bc\)
Cho a + b + c = 2p. C/minh đẳng thức: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Cho a+b+c=2p. Chứng minh hằng đẳng thức:
2bc+b^2+c^2-a^2=4p(p-a)
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :Chứng minh rằng : x5 + y5 ≥ x4y + xy4 với x, y ≠ 0 và x + y ≥ 0Với a,b,c>0. Hãy chứng minh các bất đẳng thức sau:
a, \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
b, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
c, \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\)
bài 2: cho a+b+c=2p . chứng minh đẳng thức 2bc+b2+c2-a2+4p(p-a)
giúp mình với
mình đang rất cần gấp