Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Như
Xem chi tiết
ST
31 tháng 10 2018 lúc 18:00

B=5x2+4xy-2(x-2y)+2y2+3

=5x2+4xy-2x+4y+2y2+3

=(4x2+4xy+y2)+(x2-2x+1)+(y2+4y+4)-2

=(2x+y)2+(x-1)2+(y+2)2-2  \(\ge\) -2

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Quỳnh Như
31 tháng 10 2018 lúc 18:34

thanks b

Zin Zin
Xem chi tiết
Xyz OLM
24 tháng 10 2020 lúc 1:18

a) Đặt A = u2 + v2 - 2u + 3v + 15

= (u2 - 2u + 1) + (v2 + 3v + 9/4) + 47/4

= (u - 1)2 + (v + 3/2)2 + 47/4 \(\ge\frac{47}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}u-1=0\\v+\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}u=1\\v=-\frac{3}{2}\end{cases}}\)

Vậy Min A = 47/4 <=> u = 1 ; y = -3/2

Khách vãng lai đã xóa
Kwalla
Xem chi tiết
Minh Hiếu
26 tháng 9 2023 lúc 5:40

\(D=2023-8x+2y+4xy-y^2-5x^2\)

\(=-\left(y^2+5x^2-4xy-2y+8x-2023\right)\)

\(=-\left(y^2-2.y.\left(2x+1\right)+\left(2x+1\right)^2-\left(2x+1\right)^2+5x^2+8x-2023\right)\)

\(=-\left[\left(y-2x-1\right)^2-4x^2-4x-1+5x^2+8x-2023\right]\)

\(=-\left[\left(y-2x-1\right)^2+x^2+4x-2024\right]\)

\(=-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]+2028\)

Vì \(-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]\le0\forall x,y\)

\(MaxD=2028\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

Hưng Việt Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 9 2021 lúc 13:52

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

Nguyễn Lê Phước Thịnh
5 tháng 9 2021 lúc 14:10

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

Hưng Việt Nguyễn
Xem chi tiết
Nguyễn Hải Linh
Xem chi tiết
Nguyễn Thanh Hằng
16 tháng 9 2018 lúc 19:36

\(P=2x^2+5y^2+4xy+8x-4y+15\)

\(=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-5\)

\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)

Ta có :

\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) \(\Leftrightarrow P\ge-5\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy \(P_{Min}=-5\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Kwalla
Xem chi tiết

\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)

Nguyen Minh Hieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 19:37

a: Ta có: \(A=2x^2-8x+1\)

\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x=2

Nguyen Minh Hieu
21 tháng 10 2021 lúc 19:57

bạn làm rõ ra dc ko mik ko hiểu

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 6 2019 lúc 6:46