Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mộc Miên
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2020 lúc 21:23

a/

\(\frac{3x-4}{x-2}-1>0\Leftrightarrow\frac{2x-2}{x-2}>0\Rightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)

b/

\(\frac{2x-5}{2-x}+1\le0\Rightarrow\frac{x-3}{2-x}\le0\Rightarrow\left[{}\begin{matrix}x\ge3\\x< 2\end{matrix}\right.\)

c/

\(\frac{x^2+x-3}{x^2-4}-1\le0\Rightarrow\frac{x+1}{x^2-4}\le0\Rightarrow\frac{x+1}{\left(x-2\right)\left(x+2\right)}\le0\Rightarrow\left[{}\begin{matrix}x< -2\\-1\le x< 2\end{matrix}\right.\)

d/

\(\frac{4x^2-8x+6+x^2-x-6}{2\left(x^2-x-6\right)}>0\Rightarrow\frac{x\left(5x-9\right)}{2\left(x+2\right)\left(x-3\right)}>0\Rightarrow\left[{}\begin{matrix}x>3\\0< x< \frac{9}{5}\\x< -2\end{matrix}\right.\)

e/

\(\frac{x^2+3x+2}{2x+3}-\frac{2x-5}{4}\ge0\Rightarrow\frac{4x^2+12x+8-\left(2x-5\right)\left(2x+3\right)}{4\left(2x+3\right)}\ge0\)

\(\Rightarrow\frac{28x+23}{4\left(2x+3\right)}\ge0\Rightarrow\left[{}\begin{matrix}x\ge-\frac{23}{28}\\x< -\frac{3}{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Mộc Miên
Xem chi tiết
Ngô Duy Phúc
Xem chi tiết
Trần Hữu Ngọc Minh
14 tháng 12 2017 lúc 18:40

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)

Mộc Miên
Xem chi tiết
Như Ngọc
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2020 lúc 18:14

a/ \(\frac{3}{1-x}-\frac{5}{2x+1}\ge0\Leftrightarrow\frac{11x-2}{\left(1-x\right)\left(2x+1\right)}\ge0\Rightarrow\left[{}\begin{matrix}x< -\frac{1}{2}\\\frac{2}{11}\le x< 1\end{matrix}\right.\)

b/ \(\frac{\left(2x-1\right)\left(2-x\right)}{\left(x-1\right)\left(x-3\right)}< 0\Rightarrow\left[{}\begin{matrix}x>3\\1< x< 2\\x< \frac{1}{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Trần Hoàng Uyên Nhi
Xem chi tiết
Thien Nguyen
Xem chi tiết
Lê Trang
16 tháng 6 2020 lúc 14:27

Ôn tập cuối năm phần số học

Lê Trang
16 tháng 6 2020 lúc 14:23

Ôn tập cuối năm phần số học

Lê Trang
16 tháng 6 2020 lúc 14:26

Ôn tập cuối năm phần số họcÔn tập cuối năm phần số học

nguyen hong thai
Xem chi tiết
missing you =
21 tháng 12 2021 lúc 20:14

\(3x+4y=1\Leftrightarrow y=\dfrac{1-4y}{3}\)

\(\Rightarrow A=x^2+y^2\Leftrightarrow\left(\dfrac{1-4y}{3}\right)^2+y^2=\dfrac{\left(4y-1\right)^2}{9}+y^2=\dfrac{16y^2-8y+1+9y^2}{9}=\dfrac{25y^2-8y+1}{9}=\dfrac{\left(5y\right)^2-2.5y.\dfrac{4}{5}+\left(\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}=\dfrac{\left(5y-\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}\ge\dfrac{\dfrac{9}{25}}{9}=\dfrac{1}{25}\left(đpcm\right)\)

\(A_{min}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{25}\\x=\dfrac{3}{25}\end{matrix}\right.\)

Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 8:07

Áp dụng Bunhiacopski:

\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=1\\ \Leftrightarrow25\left(x^2+y^2\right)\ge1\Leftrightarrow x^2+y^2\ge\dfrac{1}{25}\)

Dấu \("="\Leftrightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3x+4y}{9+16}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{25}\\y=\dfrac{4}{25}\end{matrix}\right.\)

Tui là Hacker
Xem chi tiết