Giải bất phương trình sau:
\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\)
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
\(\text{Giải các bất phương trình sau:}\)
\(\left(x+2\right)^2-3\left(x-1\right)>x\left(x-1\right)-5\)
\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)
\(\frac{x+2}{3}+\frac{x+3}{4}>x-\frac{x-1}{6}\)
\(\frac{2x-1}{4}-\frac{3x+2}{5}\le2+\frac{x-4}{10}\)
\(\frac{3x+5}{2}-\frac{4x-3}{3}\ge-1\)
giải bất đẳng thức :
a)\(\frac{3-2x}{5}>\frac{2-x}{3}\)
b) \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)
giúp mik vs mấy bạn
Giải Bất Phương Trình
\(\frac{-6}{x^2-4x+5}\ge x^2-4x+1\)
Giải bất phương trình:
a) \(\left(x-3\right)^2< x^2-5x+4\)
b) \(\left(x-3\right)\left(x+3\right)\le\left(x+2\right)^2+3\)
c)\(\frac{4x-5}{7}>\frac{7-x}{5}\)
d) \(\frac{2x+1}{2}+3\ge\frac{3-5x}{3}-\frac{4x+1}{4}\)
Giải các bất phương trình:
b,\(\frac{x-1}{2x-1}\)\(\ge\)1
c,\(\frac{1}{x-8}\)<\(\frac{2}{x-6}\)
B1 :Giải phương trình
a,\(\frac{3\left(x-3\right)}{4}-1=\frac{2x+3\left(x+1\right)}{6}-\frac{7+12x}{12}\)
b,\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
c,\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
d,I7-xI-5x=1
B2:Giải bất phương trình
a,\(\left(x-2\right)\left(x+2\right)\ge x\left(x-4\right)\)
b,\(\frac{x-1}{4}-1\ge\frac{x+1}{3}+8\)
cho bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng bất đẳng thức trên tìn giá trị nhỏ nhất của\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
với x,y dương và x+y=1