CMR: 55^n+1-55^n chia hết cho 54 (n thuộc N)
1.CMR: 55^n+1 - 55^n chia hết cho 54(vs n là STN)
2.CMR:n^2(n+1)+2n(n+1) luôn chia hết cho 6 vs mọi số nguyên n.
Help me!
1) \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)
2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3
=> A\(⋮\)2.3
A\(⋮\)6
CMR: 55n+1 - 55n chia hết cho 54 (n là số tự nhiên)
55n+1 – 55n =
= 55.55n – 55n
= (55 – 1) . 55n
= 54. 55n
Vậy : 55n+1 – 55n chia hết cho 54.
55n+1-55n
=55n.55-55n
=55n.(55-1)
=55n.54 chia hết cho 54(vì tích đó có 1 thừa số là 54)
Chúc bạn học giỏi nha!!!
K cho mik với nhé Võ Hồng Nhung
C/m : 55n+1 - 55n chia hết cho 54 với mọi x thuộc N
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n\left(55-1\right)\)
\(55^n.54\)
Vậy \(55^{n+1}-55^n\)chia hết cho 54 ( n thuộc N )
dó là một số nào đó N*
mình sẽ có cách giải như sau
Dễ mà bạn
55n+1 - 55n
= 55n . 55 - 55n
= 55n . ( 55 -1 )
= 55n . 54 \(⋮\)54
Đúng 100%,k mk nha
cmr 55^n+1-55^n chia het 54
cmr A=n^3-n chia het cho 6
1. Chứng minh rằng 55n+1 - 55n chia hết cho 54 ( với n là số tự nhiên )
2.CMR : n2 . ( n+1) + 2n . ( n+1) luôn chia hết cho 6 với mọi số nguyên n
1) \(55^{n+1}-55^n\) \(= 55^n . 55 - 55^n\)
\(= 55^n(55-1)\)
\(= 55^n . 54\)
\(= 55^n - 54 : 54\)
\(= 55^n\)
1 ta co 55n+1 - 55n = 55n(55-1)=55n .54 vi 54 chia het cho 54 => 55n.54 chia het cho 54
=> 55^n+1 -55^n chia het cho 4
1. Ta có 55n+1 - 55n = 55n . 55 - 55n
= 55n . ( 55 - 1)
= 55n . 54 chia hết cho 54
2. n2 . ( n + 1 ) + 2n . ( n + 1 ) = ( n + 1 ) . ( n2 + 2n )
= ( n + 1 ) . n . ( n + 2 )
= n . ( n + 1 ) . ( n + 2 )
Ta có : n . ( n + 1 ) chia hết cho 2 với mọi n (1)
n . ( n + 1 ) . ( n + 2 ) chia hết cho 3 với mọi n (2)
Từ (1) và (2) suy ra n . ( n + 1 ) . ( n + 2 ) chia hết cho 6 với mọi n
Hay n2 . ( n + 1 ) + 2n . ( n + 1 ) chia hết cho 6 với mọi n
1. chứng minh: 55^n+1-55^n chia hết cho 54
2. chứng minh: 5^6-10^4 chia hết cho 54
3. chứng minh: n^2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
Chứng minh 55n+1 - 55n chia hết cho 54 với n là N
Ta có: \(55^{n+1}-55^n=55^n.55-55^n\)
\(=55^n.\left(55-1\right)=55^n.54\)
Mặt khác: \(54⋮54\Rightarrow55^n.54⋮54\)
Do đó \(55^{n+1}-55^n⋮54\) (đpcm)
Chúc bạn học tốt!!!
\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)Vậy \(55^{n+1}-55^n⋮54\) với \(n\in N\)
chứng minh rằng 55^n+1-55^n chia hết cho 54 ( với n là số tự nhiên )
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
Chứng minh 55^(n + 1) - 55^2 chia hết cho 54 (với n là số tự nhiên)
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.