Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Khánh Huyền
Xem chi tiết
Duartte Monostrose Neliz...
18 tháng 6 2017 lúc 21:32

a+b=-c;b+c=-a;a+c=-b

suy ra cả m,n,p đều bằng -abc

Lê Anh Tú
18 tháng 6 2017 lúc 21:33

a +b +c = 0 => a + b = -c ; a +c = -b ; b+c = -a

thay vào M ta có

M = a . -c . -b = abc (1)

Thay tương tự vào N , P ta cũng đc N =abc (2)

                                                     P =abc( 3)

Từ 1 2 và 3 => ĐPCM 

Vậy .....

0o0 Nguyễn Đoàn Tuyết Vy...
18 tháng 6 2017 lúc 21:38

Vì a + b + c = 0

=> a + b = - c

    a + c = - b

   b + c = - a

Ta có:

M = a ( a + c ) ( a + b ) 

   = a . ( - b ) . (  - c) 

  = abc    ( 1)

N = b ( b + c ) ( b + a )

  = b . ( - a) . ( - c)

  = abc    ( 2) 

P = c ( c + b ) ( a + c ) 

   = c . ( - a) . ( - b )

  = abc    ( 3 ) 

Từ  ( 1 ) ; ( 2 ) ; ( 3) suy ra : M = N =  P 

Lương Ngọc Cường
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
9 tháng 7 2018 lúc 18:44

Từ \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right).\left(-b\right)=abc\\N=b\left(b+c\right)\left(b+a\right)=b.\left(-a\right).\left(-c\right)=abc\\P=c\left(c+a\right)\left(c+b\right)=c.\left(-b\right).\left(-a\right)=abc\end{matrix}\right.\)

Vậy \(M=N=P\) ( đpcm )

Wish you study well !!

Phan Nguyễn Hà My
Xem chi tiết
Trần Thùy Dương
1 tháng 8 2018 lúc 10:42

Vì \(a+b+c=0\)

Theo đề bài có : \(M=a\left(a+b\right)\left(a+c\right)\)

\(=a\left(-c\right)\left(-b\right)=abc\) (1)

    \(N=b\left(b+c\right)\left(b+a\right)\)

\(=b\left(-a\right)\left(-c\right)=abc\)    (2)

    \(P=c\left(c+a\right)\left(c+b\right)\)

\(=c\left(-b\right)\left(-a\right)=abc\)(3)

Từ (1) ;(2) và (3)

\(\Rightarrow M=N=P\) (đpcm)

Lê Vũ Anh Thư
Xem chi tiết
Nguyễn Thị Ngọc Thơ
2 tháng 8 2018 lúc 11:59

Ta có:

\(a\left(a+b\right)\left(a+c\right)=b\left(b+c\right)\left(b+a\right)\)

\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)-b\left(b+c\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-b^2+ac-bc\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a+b+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a-b=0\\a+b+c=0\end{matrix}\right.\)

Vì \(a\ne\pm b\Rightarrow a+b+c=0\) (đpcm)

Lê Vũ Anh Thư
Xem chi tiết
Không Tên
1 tháng 8 2018 lúc 20:34

\(a\ne\pm b\)   =>  \(a\pm b\ne0\)

Như vậy:   \(a\left(a+b\right)\left(b+c\right)=b\left(b+c\right)\left(b+a\right)\)

<=>  \(a\left(a+b\right)=b\left(b+c\right)\)

<=>  \(a^2+ab-b^2-bc=0\)

<=>  \(\left(a-b\right)\left(a+b+c\right)=0\)

<=>  \(a+b+c=0\)  đpcm

nguyen hong lan
1 tháng 8 2018 lúc 20:46

a(a+b)(a+c)=b(b+c)(b+a)\(\Leftrightarrow\)a(a+c)=b(b+c)   \(\Leftrightarrow\)   a(a+c)-b (b=c)    =0    \(\Leftrightarrow\)   a2-b2+ac-bc=0      \(\Leftrightarrow\) (  a  - b) (  a + b)+c ( a-b )=0   \(\Leftrightarrow\)    ( a-b)(  a+b+c)=0     \(\Leftrightarrow\) a+b+c=0(do a\(\ne\) \(\mp\)b)

Không Tên
1 tháng 8 2018 lúc 20:49

T.T xin lỗi bài này mk đánh nhầm :   

\(a\ne\pm b\)  =>   \(a\pm b\ne0\)

\(a\left(a+b\right)\left(a+c\right)=b\left(b+c\right)\left(b+a\right)\)

<=>  \(a\left(a+c\right)=b\left(b+c\right)\)   (vì a+b khác o nên chia cả 2 vế cho a+b)

<=>  \(a^2+ac=b^2+bc\)   (nhân phá ngoặc)

<=>  \(a^2+ac-b^2-bc=0\)  (chuyển vế)

<=>  \(\left(a-b\right)\left(a+b+c\right)=0\) (phân tích thành nhân tử)

<=>  \(a+b+c=0\)   (do a-b khác 0)

p/s: chi tiết nhất mak mk có thể lm rồi đó

Nguyễn Khả Hân
Xem chi tiết
Tú
Xem chi tiết
Phung Cong Anh
Xem chi tiết
Hoshymya Ichigo
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 5 2019 lúc 19:09

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)