Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Nhật Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2023 lúc 10:44

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

Kim Taehyungie
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2022 lúc 21:34

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m+1=-3

hay m=-4

 

Linh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 21:49

Bài 1: 

a) Để (d) đi qua A(1;-9) thì

Thay x=1 và y=-9 vào (d), ta được:

\(3m\cdot1+1-m^2=-9\)

\(\Leftrightarrow-m^2+3m+1+9=0\)

\(\Leftrightarrow m^2-3m-10=0\)

\(\Leftrightarrow m^2-5m+2m-10=0\)

\(\Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)

Vậy: Để (d) đi qua A(1;-9) thì \(m\in\left\{5;-2\right\}\)

tơn nguyễn
Xem chi tiết
Trần Thị Kim Ngân
Xem chi tiết
Hoàng Thanh Tuấn
1 tháng 6 2017 lúc 21:43

Bài này sử dựng định lý viet để chứng minh:

Gọi phương trình đường thẳng (d) có hệ số góc a có dạng : \(y=ax+b\left(a\ne0\right)\)\(M\left(1,2\right)\)thuộc (d) nên : \(2=a+b\Rightarrow b=2-a\left(1\right)\). Xét phương trình hoành độ giao điểm có : \(x^2=ax+b\left(2\right)\)thế 1 vào 2 có \(x^2=ax+2-a\Leftrightarrow x^2-ax-\left(2-a\right)=0\)phương trình có : \(\Delta=a^2+4\left(2-a\right)=a^2-4a+8\)\(\Rightarrow\Delta=\left(a^2-4a+4\right)+4=\left(a-2\right)^2+4\ge4\forall a\) nên phương trình luôn có hai nghiệm phân biệt với mọi giá tri của \(a\ne0\)Khi đó parabol cắt d tại hai điểm A,B  với A,B có hoành độ lần lượt là \(x_A,x_B\) theo vi ét ta có : \(\hept{\begin{cases}x_A+x_B=a\\x_Ax_B=-\left(2-a\right)\end{cases}}\)ta xét \(x_A+x_B-x_Ax_B=a+\left(2-a\right)=2\left(dpcm\right)\)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 5 2019 lúc 5:45

Phương pháp:

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số 

Diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng d:

S = ∫ x 1 x 2 k x − k + 3 − x 2 d x = 1 2 k x 2 − k − 3 x − 1 3 x 3 x 2 x 1 = 1 2 k x 1 2 − k − 3 x 1 − 1 3 x 1 3 − 1 2 k x 2 2 − k − 3 x 2 − 1 3 x 2 3 = 1 2 k x 1 2 − x 2 2 − k − 3 x 1 − x 2 − 1 3 x 1 3 − x 2 3 = x 1 − x 2 1 2 k x 1 + x 2 − k − 3 − 1 3 x 1 + x 2 2 − x 1 x 2 = x 1 − x 2 1 2 k . k − k − 3 − 1 3 k 2 − k − 3 = x 1 − x 2 1 6 k 2 − 2 3 k + 2

Nguyễn Châu Mỹ Linh
Xem chi tiết
Hoàng Quảng
Xem chi tiết
Lê Thị Thục Hiền
26 tháng 5 2021 lúc 22:25

a) \(A\in\left(d\right)\Rightarrow9=-3m+1-m^2\)

\(\Leftrightarrow m^2+3m+8=0\) \(\Leftrightarrow\left(m+\dfrac{3}{2}\right)^2+\dfrac{23}{4}=0\)(vn)

Vậy không tồn tại m để (d) đi qua A(-1;9)

b) Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=3mx+1-m^2\)

\(\Leftrightarrow2x^2-3mx-1+m^2=0\)

\(\Delta=9m^2-4.2\left(-1+m^2\right)=m^2+8>0\) với mọi m

=> Pt luôn có hai nghiệm pb => (d) luôn cắt (P) tại hai điểm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m}{2}\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)

\(x_1+x_2=2x_1x_2\)

\(\Leftrightarrow\dfrac{3m}{2}=2.\dfrac{m^2-1}{2}\) \(\Leftrightarrow2m^2-3m-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

Linh Linh
9 tháng 6 2022 lúc 21:13
Nguyễn Duy Khánh
Xem chi tiết