1+2+(24*3) =
D = ( 1/4 + 1/24 + 1/124) : ( 3/4 + 3/24 + 3/124) + ( 2/7 + 2/17 + 2/127) : (3/7 + 3/17 + 3/127)
\(D=\left(\dfrac{1}{4}+\dfrac{1}{24}+\dfrac{1}{124}\right):\left(\dfrac{3}{4}+\dfrac{3}{24}+\dfrac{3}{124}\right)+\left(\dfrac{2}{7}+\dfrac{2}{17}+\dfrac{2}{127}\right):\left(\dfrac{3}{7}+\dfrac{3}{17}+\dfrac{3}{127}\right)\)
\(D=\left(\dfrac{1}{4}+\dfrac{1}{24}+\dfrac{1}{124}\right):3\left(\dfrac{1}{4}+\dfrac{1}{24}+\dfrac{1}{124}\right):3\left(\dfrac{1}{7}+\dfrac{1}{27}+\dfrac{1}{127}\right):3\left(\dfrac{1}{7}+\dfrac{1}{27}+\dfrac{1}{127}\right)\)
\(D=\dfrac{1}{3}+\dfrac{2}{3}\)
\(D=1\)
D = \(\dfrac{\dfrac{1}{4}+\dfrac{1}{24}+\dfrac{1}{124}}{\dfrac{3}{4}+\dfrac{3}{24}+\dfrac{3}{124}}\) + \(\dfrac{\dfrac{2}{7}+\dfrac{2}{17}+\dfrac{2}{127}}{\dfrac{3}{7}+\dfrac{3}{17}+\dfrac{3}{127}}\)
D = \(\dfrac{\dfrac{1}{4}+\dfrac{1}{24}+\dfrac{1}{124}}{3.\left(\dfrac{1}{4}+\dfrac{1}{24}+\dfrac{1}{124}\right)}\) + \(\dfrac{2.\left(\dfrac{1}{7}+\dfrac{1}{17}+\dfrac{1}{127}\right)}{3.\left(\dfrac{1}{7}+\dfrac{1}{17}+\dfrac{1}{127}\right)}\)
D = \(\dfrac{1}{3}\) + \(\dfrac{2}{3}\)
D = \(\dfrac{3}{3}\)
D = 1
Tính:
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\)
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\\ =\dfrac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\dfrac{1}{\sqrt{2.3}\left(\sqrt{3}+\sqrt{2}\right)}+....+\dfrac{1}{\sqrt{24.25}\left(\sqrt{25}+\sqrt{24}\right)}\\ =\dfrac{\sqrt{2}-1}{\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{2}.\sqrt{3}}+...+\dfrac{\sqrt{25}-\sqrt{24}}{\sqrt{25}.\sqrt{24}}\\ =1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\\ =1-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\)
=1-1/5=4/5
Với `n` làm cho biểu thức dưới đây có nghĩa, ta có:
`1/((n+1)sqrtn+nsqrt(n+1))=1/(sqrtn sqrt(n+1)(sqrt(n+1)+sqrt(n)))=(sqrt(n+1)-sqrt(n))/(sqrtn sqrt(n+1))=1/(sqrtn)-1/(sqrtn+1)`
Khi đó:
`M=\sum_{n=1}^(24)=1/((n+1)sqrtn+nsqrt(n+1))=1/(sqrtn)-1/(sqrtn+1)=1/(sqrt1)-1/(sqrt25)=1-1/5=4/5`
Tính nhanh 1/(1+2)+ 1/(2+3)+......1/(23+24)+ 1/(24+25)
24/x:8/3=3/5
x+3 1/2+x=24 1/4
\(\dfrac{24}{x}:\dfrac{8}{3}=\dfrac{3}{5}\)
\(\dfrac{24}{x}=\dfrac{3}{5}.\dfrac{8}{3}\)
\(\dfrac{24}{x}=\dfrac{8}{5}\)
\(\dfrac{24}{x}=\dfrac{24}{15}\)
=>x=5
Vậy x=5
\(x+3\dfrac{1}{2}+x=24\dfrac{1}{4}\)
\(\left(x+x\right)+3\dfrac{1}{2}=24\dfrac{1}{4}\)
\(x.2+\dfrac{7}{2}=\dfrac{97}{4}\)
\(x.2=\dfrac{97}{4}-\dfrac{7}{2}\)
\(x.2=\dfrac{97}{4}-\dfrac{14}{4}\)
\(x.2=\dfrac{83}{4}\)
\(x=\dfrac{83}{4}:2\)
\(x=\dfrac{83}{4}.\dfrac{1}{2}\)
\(x=\dfrac{83}{8}\)
\(x=10\dfrac{3}{8}\)
Tìm x, biết: a) x = 1/4 + 5/13 b) x/3 = 2/3 + -1/7 c) x/3 = 16/24 + 24/ 36
d) x/15 = 1/5 + 2/3
\(a)x=\dfrac{1}{4}+\dfrac{5}{13}=\dfrac{33}{52}.\\ b)\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}.\\ \Leftrightarrow\dfrac{x}{3}=\dfrac{11}{21}.\\ \Leftrightarrow\dfrac{7x}{21}=\dfrac{11}{21}.\\ \Rightarrow7x=11.\\ \Leftrightarrow x=\dfrac{11}{7}.\\ c)\dfrac{x}{3}=\dfrac{16}{24}+\dfrac{24}{36}=\dfrac{2}{3}+\dfrac{2}{3}=\dfrac{4}{3}.\\ \Rightarrow x=4.\\ d)\dfrac{x}{15}=\dfrac{1}{5}+\dfrac{2}{3}=\dfrac{13}{15}.\\ \Rightarrow x=13.\)
Bài 1: Tính:
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(\dfrac{1}{\sqrt{7-\sqrt{24}}+1}-\dfrac{1}{\sqrt{7+\sqrt{24}}+1}\)
Cần gấp !!!
a: \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}+1+\sqrt{3}-1\right)=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
b: \(\dfrac{1}{\sqrt{7-\sqrt{24}}+1}-\dfrac{1}{\sqrt{7+\sqrt{24}}+1}\)
\(=\dfrac{1}{\sqrt{6}-1+1}-\dfrac{1}{\sqrt{6}+1+1}\)
\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}+2}=\dfrac{\sqrt{6}+2-\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)
\(=\dfrac{2}{\sqrt{6}\left(\sqrt{6}+2\right)}=\dfrac{2}{6+2\sqrt{6}}=\dfrac{1}{3+\sqrt{6}}=\dfrac{3-\sqrt{6}}{3}\)
tìm x biết 1+1/30:(24+1/6-24+1/5)-(1+1/2-3/4)/(4x-1/2)=(-1+1/15):(8+1/5-8+1/3)
tìm x biết 1+1/30:(24+1/6-24+1/5)-(1+1/2-3/4)/(4x-1/2)=(-1+1/15):(8+1/5-8+1/3)
Trong các phân số 1/4 , 2/3 , 9/12 , 3/24. Phân số lớn nhất là:
A.1/4 B.2/3 C.9/12 D.3/24
(1/4+1/24+1/124):(3/4+3/24+3/124)+(2/7+2/17+2/127):(3/7+3/17+3/127)
Tính giá trị của biểu thức trên