a: \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}+1+\sqrt{3}-1\right)=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
b: \(\dfrac{1}{\sqrt{7-\sqrt{24}}+1}-\dfrac{1}{\sqrt{7+\sqrt{24}}+1}\)
\(=\dfrac{1}{\sqrt{6}-1+1}-\dfrac{1}{\sqrt{6}+1+1}\)
\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}+2}=\dfrac{\sqrt{6}+2-\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)
\(=\dfrac{2}{\sqrt{6}\left(\sqrt{6}+2\right)}=\dfrac{2}{6+2\sqrt{6}}=\dfrac{1}{3+\sqrt{6}}=\dfrac{3-\sqrt{6}}{3}\)