Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ILoveMath
Xem chi tiết
Lê Song Phương
Xem chi tiết
Phạm Đạt
Xem chi tiết
Ngô Thùy Dung (>^-^
26 tháng 7 2019 lúc 12:50

.

Mo Nguyễn Văn
6 tháng 9 2019 lúc 19:47

Nguyên Hưng Trần
6 tháng 9 2019 lúc 20:09

a.\(\left(x^2-y^2-z^2\right)=\left(x-y\right)^2-2z\left(x-y\right)+z^2=x^2-2xy+y^2-2zx+2zy+z^2\)

b.\(\left(x+y-z\right)^2=\left(x+y\right)^2-2z\left(x+y\right)+z^2=x^2+2xy+y^2-2zy-2zx+z^2\)

Nguyễn Thiều Công Thành
Xem chi tiết
ILoveMath
Xem chi tiết
nam do
Xem chi tiết
Khôi Bùi
3 tháng 3 2019 lúc 17:32

Ta có \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3+3xy\left(x+y\right)=0\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

Đặt \(A=2xy^2+2yz^2+2zx^2+3xyz=2xy^2+2yz^2+2zx^2+x^3+y^3+z^3\)

\(=x^2\left(2z+x\right)+y^2\left(2x+y\right)+z^2\left(2y+z\right)\)

Do \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}2z+x=z-y\\2x+y=x-z\\2y+z=y-x\end{matrix}\right.\)

\(\)\(\Rightarrow A=x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\)

\(=x^2\left(z-y\right)-y^2\left(z-y+y-x\right)+z^2\left(y-x\right)\)

\(=\left(x^2-y^2\right)\left(z-y\right)-\left(z^2-y^2\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(z-y\right)\left(x+y-z-y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

\(\Rightarrow\dfrac{2018\left(x-y\right)\left(y-z\right)\left(x-z\right)}{A}=2018\)

\(\Rightarrow P=2018\)

Vậy \(P=2018\)

Thuý An Nguyễn Thị
Xem chi tiết
Nguyễn Thị Xuân Dung
30 tháng 7 2018 lúc 15:53

\(\left(x+y+z\right)^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2xy+z^2\)

dia fic
Xem chi tiết
Soái muội
Xem chi tiết
Nhật Hạ
17 tháng 8 2019 lúc 17:44

a, \(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)\(=x^2+2xy+y^2+2zx+2zy+z^2=x^2+y^2+z^2+2xy+2yz+2zx\)(đpcm)

b, \(\left(x+y+z\right)^3=\left(\left(x+y\right)+z\right)^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+z\left(x+y+z\right)\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)