Cho các đa thức A=x^2y ;B=xy^2 .Chứng tỏ rằng nếu x,y thuộc Z và x+y chia hết cho 13 thì A+B chia hết cho 13 .Cần trả lời gấp từ đây đến 2h chieu nay
cho các đa thức : A= x^2 - 2y+xy+1;B= x^2 + y - x^2y^2 -1
TÌM ĐA THỨC C SAO CHO : a) C=A+B B)= C +A = B
a: \(C=A+B=x^2-2y+xy+1+x^2+y-x^2y^2-1=2x^2-y+xy-x^2y^2\)
b: C=B-A
\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)
\(=-x^2y^2-2+3y-xy\)
\(a,C=A+B=x^2-2y+xy+1+x^2+y-x^2y^2-1\\ =2x^2-y+xy-x^2y^2\)
câu b đề khó hiểu quá
Cho các đa thức: A= x^2- 2y +xy1; B=x^2y-x^2y^2-1; C=-y- x^2y^2. Tính A+B-C
Bài làm
Ta có: A = x2 - 2y + xy + 1 ; B = x2y - x2y2 - 1; C = - y - x2y2
=> A + B - C = ( x2 - 2y + xy + 1 ) + ( x2y - x2y2 - 1 ) - ( - y - x2y2 )
=> A + B - C = x2 - 2y + xy + 1 + x2y - x2y2 + y + x2y2
=> A + B - C = x2 + ( -2y + y ) + xy + ( -x2y2 + x2y2 ) + 1 + x2y
=> A + B - C = x2 - y + xy + 1 + x2y
Vậy A + B - C = x2 - y + xy + 1 + x2y
# Học tốt #
Cho các đa thức: A= x^2- 2y +xy1; B=x^2 + y-x^2y^2-1; C=-y- x^2y^2. Tính A+B-C
#giúp mik làm bài kiểu này vs ạ
cho 2 đa thức A= \(-4x^5y^3+x^4y^3-3x^2y^3z^2-x^4y^3+x^2y^3z^2-2y^4\)
a) thu gọn rồi tìm bậc đa thức A
b) tìm đa thức B biết rằng B\(-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)
b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)
Bài 1:Tìm các đa thức M;N biết :
a) (6x^2 - 3xy^2)+M=x^2 + y^2-2xy^2
b) N-(2xy-4y^2)=5xy+x^2-7y^2
Bài 2:cho các đa thức
A= x^2 - 2y^2 + xy +1
B= x^2 + y^2 -x^2y^2 -1
Tìm đa thức C thỏa mãn:
a) C=A+B
b) C+A+B
Bài 2 :
a, \(A+B=x^2-2y^2+xy+1+x^2+y^2-x^2y^2-1=2x^2-y^2+xy-x^2y^2\)
b, \(C+A+B=2x^2-y^2+xy-x^2y^2+2x^2-y^2+xy-x^2y^2=4x^2-2y^2+2xy-2x^2y^2\)
bạn đăng tách bài ra cho mọi người cùng giúp nhé
Bài 1 :
a, \(6x^2-3xy^2+M=x^2+y^2-2xy^2\Leftrightarrow M=-5x^2+y^2+xy^2\)
b, \(N-\left(2xy-4y^2\right)=5xy+x^2-7y^2\)
\(\Leftrightarrow N=5xy+x^2-7y^2+2xy-4y^2=x^2+7xy-11y^2\)
oki làm liền :)
Bài1
a) (6x^2 - 3xy^2) + M = x^2 + y^2 - 2xy^2
b) N - (2xy - 4y^2) = 5xy + x^2 - 7y^2
bài 2 mk tách sẵn rùi
Cho 2 đa thức sau: A=x^2-x^2y+5y^2+5 B=3x^2+3xy^2-2y^2-8 a. Thu gọn và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến b. Tính A-B Giải giúp với an đang cần gấp!!!
bạn ghi theo công thúc như vầy 5x2 đc kohay chụp ảnh
Tìm các đa thức A và B biết: a) A+(x^2 - 4xy^2 + 2xz -3y^2)=0 b) Tổng của đa thức B với đa thức (4x^2y + 5y^2 - 3xz + z^2) là một đa thức không chứa biến x
Bài 1. (2 điểm)
a) Thực hiện phép chia đa thức $A = 5x^3y^2 - 3x^2y + xy$ cho $xy$.
b) Cho đa thức $M = x^3 - x^2y + 2xy + 3$ và $P = 3x^3 - 2x^2y - xy + 3$. Tìm đa thức $A$ biết $A + 2M = P$.
a) (5x³y² - 3x²y + xy) : xy
= 5x³y² : xy + (-3x²y : xy) + xy : xy
= 5x²y - 3x + 1
b) A + 2M = P
A = P - 2M
= 3x³ - 2x²y - xy + 3 - 2.(x³ - x²y + 2xy + 3)
= 3x³ - 2x²y - xy + 3 - 2x³ + 2x²y - 4xy - 6
= (3x³ - 2x³) + (-2x²y + 2x²y) + (-xy - 4xy) + (3 - 6)
= x³ - 5xy - 3
Vậy A = x³ - 5xy - 3
a) \(A:xy\)
\(=\left(5x^3y^2-3x^2y+xy\right):xy\)
\(=5x^3y^2:xy-3x^2y:xy+xy:xy\)
\(=5x^2y-3x+1\)
b) \(A+2M=P\)
\(\Rightarrow A+2\cdot\left(x^3-x^2y+2xy\right)=3x^3-2x^2y-xy+3\)
\(\Rightarrow A+2x^3-2x^2y+4xy=3x^3-2x^2y-xy+3\)
\(\Rightarrow A=3x^3-2x^3-2x^2y+2x^2y-xy-4xy+3\)
\(\Rightarrow A=x^3-4xy+3\)
a) (5x³y² - 3x²y + xy) : xy
= 5x³y² : xy + (-3x²y : xy) + xy : xy
= 5x²y - 3x + 1
b) A + 2M = P
A = P - 2M
= 3x³ - 2x²y - xy + 3 - 2.(x³ - x²y + 2xy + 3)
= 3x³ - 2x²y - xy + 3 - 2x³ + 2x²y - 4xy - 6
= (3x³ - 2x³) + (-2x²y + 2x²y) + (-xy - 4xy) + (3 - 6)
= x³ - 5xy - 3
Vậy A = x³ - 5xy - 3
câu 1. (1,5đ) cho hai đa thức sau: P=x^2y+2x^3-xy^2+5 Q=x^3+xy^2-2x^2y-6 a) tính tổng của đa thức p và q. b) tìm đa thức n sao cho q = p + n.
a) P + Q = (x² + 2x³ - xy² + 5) + (x³ + xy² - 2x²y - 6)
= x² + 2x³ - xy² + 5 + x³ + xy² - 2x²y - 6
= (2x³ + x³) + x² + (-xy² + xy²) - 2x²y + (5 - 6)
= 3x³ + x² - 2x²y - 1
b) Q = P + N
N = Q - P
= (x³ + xy² - 2x²y - 6) - (x² + 2x³ - xy² + 5)
= x³ + xy² - 2x²y - 6 - x² - 2x³ + xy² - 5
= (x³ - 2x³) + (xy² + xy²) - 2x²y - x² + (-6 - 5)
= -x³ + 2xy² - 2x²y - x² - 11
Vậy N = -x³ + 2xy² - 2x²y - x² - 11
Tính tổng hai đa thức P và Q rồi tìm bậc của đa thức tổng
Cho đa thức:
\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)
a,Thu gọn đa thức và xác định bậc của đa thức kết quả.
b, Tìm đa thức b sao cho A+B=0
c, Tìm đa thức C sao cho A+C=-2XY+1
\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)
\(A=\left(5xy^2-xy^2\right)+\left(xy+2xy+xy\right)+\left(-\frac{1}{3}x^2y+x^2y\right)+6\)
\(A=4xy^2+4xy+\frac{2}{3}x^2y+6\)
b) để A+B=0 => B là số đối của A
\(\Rightarrow B=-4xy^2-4xy-\frac{2}{3}x^2y-6\)
c) Ta có \(A+C=-2xy+1\Leftrightarrow4xy^2+4xy+\frac{2}{3}x^2y+6+C=-2xy+1\)
\(\Leftrightarrow C=-2xy+1-4xy^2-4xy-\frac{2}{3}x^2y-6\)
\(\Leftrightarrow C=\left(-2xy-4xy\right)+\left(1-6\right)-4xy^2-\frac{2}{3}x^2y\)
\(\Leftrightarrow C=-6xy-5-4xy^2-\frac{2}{3}x^2y\)
cho các đa thức
P(x)= 5x+x^3y-2xy+4x^3y+3x^2y-10x,
Q(x) = 4x-5x^3y+2x^2y-x^3y+6xy+11x^3-8x
a)thu gọn và tìm bậc của đa thức P(x)-Q(x)
b)tính p(x)+Q(x) ;P(x)-Q(x)
Lời giải:
a) $P(x)= 5x+x^3y-2xy+4x^3y+3x^2y-10x$
$=(x^3y+4x^3y)+3x^2y-2xy+(5x-10x)$
$=5x^3y+3x^2y-2xy-5x$
$Q(x)=4x-5x^3y+2x^2y-x^3y+6xy+11x^3-8x$
$=-6x^3y+2x^2y+11x^3+6xy-4x$
$P(x)-Q(x)=11x^3y+x^2y-8xy-x-11x^3$
Bậc của $P(x)-Q(x)$ là $3+1=4$
b)
$P(x)+Q(x)=-x^3y+5x^2y+4xy-9x+11x^3$
$P(x)-Q(x)$ đã thu gọn ở phần a.