1 + 1/2 + 1/3 + ... + 1/32 > 3
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
tính nhanh p/s 1+ 5/4 + 5/8 + 5/16 + 5/32 + 5/64
b) 1/3 +1/9 + 1/27 + 1/81 +...........+ 1/59049
c) 3/2 + 3/8 + 3/32 +3/128 + 3/512
d) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 giúp mình với
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
A=(3^2+1).(3^4+1).(3^8+1).(3^16+1)-3^32/2 (3^32/2 là phân số nha)
mọi người giúp emvới
Lời giải:
8A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)-4.3^{32}$
$=[(3^2-1)(3^2+1)](3^4+1)(3^8+1)(3^{16}+1)-4.3^{32}$
$=(3^4-1)(3^4+1)(3^8+1)(3^{16}+1)-4.3^{32}$
$=(3^8-1)(3^8+1)(3^{16}+1)-4.3^{32}$
$=(3^{16}-1)(3^{16}+1)-4.3^{32}$
$=3^{32}-1-4.3^{32}$
$=-3.3^{32}-1=-3^{33}-1$
$\Rightarrow A=\frac{-3^{33}-1}{8}$
BÀI TÍNH NHANH
A.2/3+2/6+2/12+2/24+2/48+2/96+2/192
B.1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
C.1/3+1/9+1/27+1/81+1/243+1/729
D.3/2+3/8+3/32+3/128+3/512
E.3+3/5+3/25+3/125+3/625
a) = \(\frac{127}{96}\)
b) = \(\frac{255}{256}\)
c) Mik bỏ nha
d) = \(\frac{1023}{512}\)
e) = \(\frac{2343}{625}\)
A=1+2+3+....+20
B=1+3+5+.....21
(2x-1) • 2 = 13
32•(x-10)=32
Tìm x
a)
Dãy trên có số số hạng là:
( 20 - 1 ) : 1 + 1 = 20 ( số hạng )
Tổng của dãy trên là:
( 20 + 1 ) x 20 : 2 = 210
Đáp số: 210
b)
Dãy trên có số số hạng là:
( 21 - 1 ) : 2 + 1 = 11 ( số hạng )
Tổng của dãy trên là:
( 21 + 1 ) x 11 : 2 = 121
Đáp số: 121
c) ( 2x - 1 ) x 2 = 13
2x - 1 = \(\dfrac{13}{2}\)
2x = \(\dfrac{15}{2}\)
\(x=\dfrac{15}{4}\)
32 x ( x - 10 ) = 32
( x - 10 ) = 1
x = 11
\(A=1+2+3+...+20\)
Số hạng:
\(\left(20-1\right):1+1=20\) (số hạng)
Tổng: \(\left(20+1\right)\cdot20:2=210\)
\(B=1+3+5+...+21\)
Số hạng:
\(\left(21-1\right):2+1=11\) (số hạng)
Tổng: \(\left(21+1\right)\cdot11:2=121\)
\(\left(2x-1\right)\cdot2=13\)
\(\Rightarrow2x-1=\dfrac{13}{2}\)
\(\Rightarrow2x=\dfrac{15}{2}\)
\(\Rightarrow x=\dfrac{15}{4}\)
\(32\cdot\left(x-10\right)=32\)
\(\Rightarrow x-10=1\)
\(\Rightarrow x=11\)
`a,` Khoảng cách là : `1`
Số số hạng là : \(\dfrac{20-1}{1}+1=20\)
Tổng là : \(\dfrac{20+1\times20}{2}=\)`210`
`b,` Khoảng cách là : `2`
Số số hạng là : \(\dfrac{21-1}{2}+1=11\)
Tổng là : \(\dfrac{21+1\times11}{2}=121\)
\(c,\left(2x-1\right).2=13\\ \Rightarrow2x-1=\dfrac{13}{2}\\ \Rightarrow2x=\dfrac{13}{2}+1\\ \Rightarrow2x=\dfrac{15}{2}\\ \Rightarrow x=\dfrac{15}{2}:2\\ \Rightarrow x=\dfrac{15}{4}\)
\(32.\left(x-10\right)=32\\ \Rightarrow x-10=32:32\\ \Rightarrow x-10=1\\ \Rightarrow x=1+10\\ \Rightarrow x=11\)
tính \(a=1+\frac{1}{2}\cdot\left(1+2\right)+\frac{1}{3}\cdot\left(1+2+3\right)+\cdot\cdot\cdot+\frac{1}{32}\cdot\left(1+2+3+\cdot\cdot\cdot+32\right)\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{32}\left(1+2+3+...+32\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+....+\frac{1}{32}.\frac{32.\left(32+1\right)}{2}\)
\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{32+1}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{33}{2}\)
\(\frac{2+3+4+....+33}{2}\)
\(=\frac{\frac{33\left(33+1\right)}{2}-1}{2}=280\)
(3+1)*(3^2+1)*(3^4+1)*(3^8+1)*(3^16+1)*(3^32+1)
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2A=3^{64}-1\Rightarrow A=\dfrac{3^{64}-1}{2}\)
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
Áp dụng đẳng thức : a^2 - 1 = (a + 1)(a - 1)
=> a + 1 = (a^2 - 1)/(a + 1)
Ta có: 3 + 1 = (3^2 - 1)/(3 - 1)
3^2 + 1 = (3^4 - 1)/(3^2 - 1)
3^4 + 1 = (3^8 - 1)/(3^4 - 1)
3^8 + 1 = (3^16 - 1)/(3^8 - 1)
3^16 + 1 = (3^32 - 1)/(3^16 - 1)
3^32 + 1 = (3^64 - 1)/(3^32 - 1)
(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
=(3^2 - 1)/(3 - 1).(3^4 - 1)/(3^2 - 1).(3^8 - 1)/(3^4 - 1).(3^32 - 1)/(3^16 - 1).(3^64 - 1)/(3^32 - 1)
=(3^64 - 1)/(3 - 1)
=(3^64 - 1)/2
B= 32 . (-1/5)^5 _ 27. (-1/3)^3 + 2/3 : (1 2/3- 2 3/16)