\(\frac{2014.2013-1}{2012.2014+2013}\)
Thực hiện phép tính :
A = \(\frac{1-3}{1.3}+\frac{2-4}{2.4}+\frac{3-5}{3.5}+..........+\frac{2012-2014}{2012.2014}-\frac{2013+2014}{2013.2014}\)
giúp mình nha
tính hợp lí:
20134 -.2012.2014.(20132+1)
\(=2013^4-\left(2012\cdot2014\right)\left(2013^2+1\right)\\ =2013^4-\left(2013^2-1\right)\left(2013^2+1\right)\\ =2013^4-\left(2013^4-1\right)\\ =1\)
Tính hợp lý:
2013\(^4\)-2012.2014.(2013\(^2\)+1)
20134-2012.2014.(20132+1)
=20134-(2013-1)(2013+1).(20132+1)
=20134-(20132-1)(20132+1)
=20134-20134+1
=1
so sánh 2011.2013+2012.2014 và 2012+2013^2-2
\(2011.2013+2012.2014\)
\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)
\(=2012^2-1+2013^2-1\)
\(=2012^2+2013^2-2\)
\(\Rightarrow2011.2013+2012.2014=2012^2+2013^2-2\)
Thực hiện tính :
a) A = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+..+2013)
b) B = 1-3/7.3+2-4/2.4+3-5/3.5+4-6/4.6+....+2011-2013/2011.2013+2012-2014/2012.2014-2013+2014/2013.2014
So sánh \(\sqrt{2012.2014}\) và 2013
\(\left\{{}\begin{matrix}2013=\sqrt{2013^2}\\\sqrt{2012.2014}=\sqrt{\left(2013-1\right)\left(2013+1\right)}=\sqrt{2013^2-1}\end{matrix}\right.\Rightarrow\sqrt{2012.2014}< 2013\)
Tính : \(\frac{1}{2015.2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{2}\)
\(=\frac{2015-2014}{2015.2014}-\frac{2014-2013}{2014.2013}-\frac{2013-2012}{2013.2012}-...-\frac{2-1}{2.1}\)
\(=\left(\frac{2015}{2015.2014}-\frac{2014}{2015.2014}\right)-\left(\frac{2014}{2014.2013}-\frac{2013}{2014.2013}\right)-...-\left(\frac{2}{2.1}-\frac{1}{2.1}\right)\)
\(=\left(\frac{1}{2014}-\frac{1}{2015}\right)-\left(\frac{1}{2013}-\frac{1}{2014}\right)-\left(\frac{1}{2012}-\frac{1}{2013}\right)-...-\left(1-\frac{1}{2}\right)\)
\(=\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2012}+\frac{1}{2013}-...-1+\frac{1}{2}\)
\(=\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2014}-1=\frac{1}{1007}-\frac{1}{2015}-1=...\)
Bài 3 : Tính :
A = \(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+....+\frac{1}{1.2}\)
\(A=\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{1.2}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
Vậy \(A=\frac{2015}{2016}\).
Mình viết ngược lại cho dễ làm xD
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}+\frac{1}{2015\cdot2016}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\frac{1}{1}-\frac{1}{2016}\)
\(A=\frac{2015}{2016}\)
Sai thì bỏ quá :3
= 2015/2016 nha bạn
so sánh
2011.2013+2012.2014
\(2012^2+2013^2-2\)
2011.2013+2012.2014
=(2013-2).2013+2012.(2012+2)
=20132-4026+20122+4024
=20132+20122+(-4026+4024)
=20132+20122-2
Ta có:\(2011.2013+2012.2014\)
\(=\left(2013-2\right).2013+\left(2012+2\right).2012\)
\(=2013^2-4026+2012^2+4024\)
\(=2012^2+2013^2-2\)
nên hai phép tính trên bằng nhau.