Giúp e giải chi tiết 12 đến 30 đi ạ
Giúp e giải chi tiết câu 29 30 đi ạ
29.
\(y'=\dfrac{1}{3}x^3-\dfrac{1}{2}\left(m^2+1\right)x^2+\left(m^2-7m+12\right)x\)
\(y''=x^2-\left(m^2+1\right)x+m^2-7m+12\)
Pt \(y''=0\) có 2 nghiệm trái dấu khi và chỉ khi:
\(1.\left(m^2-7m+12\right)< 0\)
\(\Leftrightarrow3< m< 4\)
\(\Rightarrow\) Không có giá trị nguyên nào của m thỏa mãn
30.
\(y'=x^2-2\left(2m+1\right)x-m\ge0;\forall x\)
\(\Leftrightarrow\Delta'=\left(2m+1\right)^2+m\le0\)
\(\Leftrightarrow4m^2+5m+1\le0\)
\(\Leftrightarrow-1\le m\le-\dfrac{1}{4}\)
\(\Rightarrow\) Có 1 giá trị nguyên của m thỏa mãn (\(m=-1\))
Giúp e câu 12 vẽ hình giải chi tiết đi ạ
Câu 12.
Ta có: \(\dfrac{sini}{sinr}=n\Rightarrow\dfrac{sin60^o}{sinr}=1,5\)
\(\Rightarrow sinr=\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow r\approx35,3^o\)
Chọn C
Giúp e giải chi tiết câu 35 đến 37 đi ạ
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}\)
\(=\dfrac{6}{2\left(4+4\right)}=\dfrac{3}{8}\)
\(f\left(3\right)=1-2m\)
Hàm liên tục trên R khi:
\(1-2m=\dfrac{3}{8}\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)
Giúp e giải chi tiết và vẽ hình câu 38 đến 40 đi ạ
38.
\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)
\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)
\(y\left(2\right)=-\dfrac{11}{3}\)
Phương trình d:
\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)
Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn
39.
Gọi E là trung điểm AB, F là trung điểm CD
Từ E kẻ EH vuông góc SF (H thuộc SF)
Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)
\(\Rightarrow SE\perp CD\)
\(EF||AD\Rightarrow EF\perp CD\)
\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)
\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)
Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)
\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)
Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)
Giúp e câu 29 30 giải chi tiết ạ
Hi bạn, câu 29 này mình có cái cách này dùng cho các bài lim khi rơi vào trường hợp vô định thì bạn dùng quy tắc L'Hospital làm cho nhanh với trường hợp các bài trắc nghiệm như thế này
Ở bài 29 này đang rơi vào dạng \(\dfrac{0}{0}\) nên dùng quy tắc L'Hospital được nè. Bạn làm như sau:
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x\ge-3\end{matrix}\right.\)
Bước 1: Đạo hàm tử mẫu, ta được: \(\dfrac{\dfrac{1}{2}\left(x+3\right)^{-\dfrac{1}{2}}}{1}\)
Bước 2: Thay điểm cần tính giới hạn: (x=1)
ta sẽ được \(\dfrac{1}{4}\)
Vậy \(lim_{x\rightarrow1}\dfrac{\sqrt{x+3}-2}{x-1}=\dfrac{1}{4}\)
\(\Rightarrow a=1;b=4\)
Vậy S=4a-b=0
Giúp e giải chi tiết đi ạ
a: BA vuông góc AD
BA vuông góc SA
=>BA vuông góc (SAD)
b: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
=>(SCD) vuông góc (SAD)
c: (SD;(ABCD))=(DS;DA)=góc SDA
tan SDA=SA/AD=căn 6/2
=>góc SDA=51 độ
Giúp e giải chi tiết câu 5 đi ạ
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{mx^2-\left(m+3\right)x+3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(mx-3\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(mx-3\right)=m-3\)
\(f\left(1\right)=m^2-15\)
Hàm liên tục tại \(x=1\) khi:
\(m-3=m^2-15\Rightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)
\(4^2+\left(-3\right)^2=25\)
Giúp e giải chi tiết câu 3 đi ạ
\(y'=3x^2-2\)
hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)
\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)
Giúp e giải chi tiết 19 20 đi ạ
19. Giới hạn đã cho hữu hạn khi và chỉ khi \(a=1\)
Khi đó:
\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx-2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-\left(x^2+bx-2\right)}{x+\sqrt{x^2+bx-2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx+2}{x+\sqrt{x^2+bx-2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-b+\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}-\dfrac{2}{x^2}}}=-\dfrac{b}{2}\)
\(\Rightarrow-\dfrac{b}{2}=3\Rightarrow b=-6\Rightarrow a+b=1+\left(-6\right)=-5\)
20.
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+2x-1\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{2}{x^2}-\dfrac{1}{x^3}\right)=+\infty.1=+\infty\)