Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trúc Phạm
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:04

29.

\(y'=\dfrac{1}{3}x^3-\dfrac{1}{2}\left(m^2+1\right)x^2+\left(m^2-7m+12\right)x\)

\(y''=x^2-\left(m^2+1\right)x+m^2-7m+12\)

Pt \(y''=0\) có 2 nghiệm trái dấu khi và chỉ khi:

\(1.\left(m^2-7m+12\right)< 0\)

\(\Leftrightarrow3< m< 4\)

\(\Rightarrow\) Không có giá trị nguyên nào của m thỏa mãn

30.

\(y'=x^2-2\left(2m+1\right)x-m\ge0;\forall x\)

\(\Leftrightarrow\Delta'=\left(2m+1\right)^2+m\le0\)

\(\Leftrightarrow4m^2+5m+1\le0\)

\(\Leftrightarrow-1\le m\le-\dfrac{1}{4}\)

\(\Rightarrow\) Có 1 giá trị nguyên của m thỏa mãn (\(m=-1\))

Mèo con
Xem chi tiết
nguyễn thị hương giang
29 tháng 3 2022 lúc 20:21

Câu 12.

Ta có: \(\dfrac{sini}{sinr}=n\Rightarrow\dfrac{sin60^o}{sinr}=1,5\)

\(\Rightarrow sinr=\dfrac{\sqrt{3}}{3}\)

\(\Rightarrow r\approx35,3^o\)

Chọn C

Trúc Phạm
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 22:05

\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}\)

\(=\dfrac{6}{2\left(4+4\right)}=\dfrac{3}{8}\)

\(f\left(3\right)=1-2m\)

Hàm liên tục trên R khi: 

\(1-2m=\dfrac{3}{8}\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)

Trúc Phạm
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 21:47

38.

\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)

\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)

\(y\left(2\right)=-\dfrac{11}{3}\)

Phương trình d:

\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)

Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 21:54

39.

Gọi E là trung điểm AB, F là trung điểm CD

Từ E kẻ EH vuông góc SF (H thuộc SF)

Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)

\(\Rightarrow SE\perp CD\)

\(EF||AD\Rightarrow EF\perp CD\)

\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)

\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)

Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)

\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)

Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 21:55

Hình vẽ câu 39:

undefined

Trúc Phạm
Xem chi tiết
Ami Mizuno
15 tháng 5 2022 lúc 22:44

Hi bạn, câu 29 này mình có cái cách này dùng cho các bài lim khi rơi vào trường hợp vô định thì bạn dùng quy tắc L'Hospital làm cho nhanh với trường hợp các bài trắc nghiệm như thế này

Ở bài 29 này đang rơi vào dạng \(\dfrac{0}{0}\) nên dùng quy tắc L'Hospital được nè. Bạn làm như sau:

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x\ge-3\end{matrix}\right.\)

Bước 1: Đạo hàm tử mẫu, ta được: \(\dfrac{\dfrac{1}{2}\left(x+3\right)^{-\dfrac{1}{2}}}{1}\)

Bước 2: Thay điểm cần tính giới hạn: (x=1)

ta sẽ được \(\dfrac{1}{4}\)

Vậy \(lim_{x\rightarrow1}\dfrac{\sqrt{x+3}-2}{x-1}=\dfrac{1}{4}\)

\(\Rightarrow a=1;b=4\)

Vậy S=4a-b=0

Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 20:35

a: BA vuông góc AD

BA vuông góc SA

=>BA vuông góc (SAD)

b: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

=>(SCD) vuông góc (SAD)

c: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=căn 6/2

=>góc SDA=51 độ

Mèo con
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 14:44

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{mx^2-\left(m+3\right)x+3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(mx-3\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(mx-3\right)=m-3\)

\(f\left(1\right)=m^2-15\)

Hàm liên tục tại \(x=1\) khi:

\(m-3=m^2-15\Rightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

\(4^2+\left(-3\right)^2=25\)

Mang Phạm
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2022 lúc 12:32

\(y'=3x^2-2\)

hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)

\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)

Mèo con
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 14:43

19. Giới hạn đã cho hữu hạn khi và chỉ khi \(a=1\)

Khi đó:

\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx-2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-\left(x^2+bx-2\right)}{x+\sqrt{x^2+bx-2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx+2}{x+\sqrt{x^2+bx-2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-b+\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}-\dfrac{2}{x^2}}}=-\dfrac{b}{2}\)

\(\Rightarrow-\dfrac{b}{2}=3\Rightarrow b=-6\Rightarrow a+b=1+\left(-6\right)=-5\)

20.

\(\lim\limits_{x\rightarrow+\infty}\left(x^3+2x-1\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{2}{x^2}-\dfrac{1}{x^3}\right)=+\infty.1=+\infty\)