Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quách Phương
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2021 lúc 18:38

\(\Leftrightarrow\dfrac{mx^2-5x+m-4}{mx^2-4x+m-3}>0\)

BPT đã cho có tập nghiệm là R khi và chỉ khi:

\(\left\{{}\begin{matrix}\Delta_1=25-4m\left(m-4\right)< 0\\\Delta'_2=4-m\left(m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4m^2+16m+25< 0\\-m^2+3m+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< \dfrac{4-\sqrt{41}}{2}\\m>\dfrac{4+\sqrt{41}}{2}\end{matrix}\right.\)

lý canh hy
Xem chi tiết
Chii Phương
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 11:37

a, b bạn tự giải

c. \(\Delta=m^2+4>0;\forall m\Rightarrow\) pt luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)

Ồ, đề câu d bạn ghi sai, 2 mẫu số phải có 1 cái là \(x_1\)

Kimian Hajan Ruventaren
Xem chi tiết
Gallavich
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 16:23

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

Bánh Mì
Xem chi tiết
phạm ngọc băng
Xem chi tiết
khiem vu van
Xem chi tiết
Hà Quang Minh
16 tháng 8 2023 lúc 8:26

\(x^3-4x^2+mx-m+3=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-3x+m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-3x+m-3=0\left(2\right)\end{matrix}\right.\)

Để phương trình có 1 nghiệm duy nhất thì \(x^2-3x+m-3=0\) vô nghiệm hoặc có 1 nghiệm kép bằng 1.

TH1: Phương trình (2) vô nghiệm

\(\Delta=b^2-4ac=9-4\left(m-3\right)=-4m+12< 0\\ \Rightarrow m>3\)

TH2: Phương trình (2) có 1 nghiệm kép bằng 1, khi đó:

\(\left\{{}\begin{matrix}\Delta=-4m+12=0\\1^2-3\cdot1+m-3=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\left(loại\right)}\)

Vậy để phương trình có nghiệm duy nhất thì m > 3.

Thái Hưng Mai Thanh
Xem chi tiết