Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Ngọc Tố Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2022 lúc 10:22

uses crt;

var st:string;

d,i,t,x,y,a,b:integer;

begin

clrscr;

readln(st);

d:=length(st);

for i:=1 to d do write(st[i]:4);

writeln;

t:=0;

for i:=1 to d do

begin

val(st[i],x,y);

t:=t+x;

end;

writeln(t);

val(st[d],a,b);

if (a mod 2=0) then write(1)

else write(-1);

readln;

end.

Bùi Ngọc Tố Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2022 lúc 11:17

#include <bits/stdc++.h>

using namespace std;

long long a[1000],i,n,t,dem,t1;

int main()

{

cin>>n;

for (i=1; i<=n; i++) cin>>a[i];

t=0;

for (i=1; i<=n; i++) if (a[i]%2==0) t+=a[i];

cout<<t<<endl;

t1=0;

dem1=0;

for (i=1; i<=n; i++)

if (a[i]<0)

{

cout<<a[i]<<" ";

t1+=a[i];

dem1++;

}

cout<<endl;

cout<<fixed<<setprecision(1)<<(t1*1.0)/(dem1*1.0);

return 0;

}

Bùi Ngọc Tố Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2022 lúc 11:18

#include <bits/stdc++.h>
using namespace std;
long long a,b;
//chuongtrinhcon
long long gcd(long long a,long long b)
{
    if (b==0) return(a);
    return gcd(b,a%b);
}
//chuongtrinhchinh
int main()
{
    cin>>a>>b;

cout<<max(a,b)<<endl;

cout<<gcd(a,b)<<endl;
    if ((a>0 && b>0) or (a<0 && b<0)) cout<<a/gcd(a,b)<<" "<<b/gcd(a,b);
    else cout<<"-"<<-a/gcd(-a,b)<<" "<<b/gcd(-a,b);
    return 0;
}

 

24.Trần Mai Phương
Xem chi tiết
Nguyễn acc 2
26 tháng 2 2022 lúc 19:31

Bn cần bài nào trong 2 bài nhỉ?

Đỗ Tuệ Lâm
26 tháng 2 2022 lúc 19:32

e tách câu hỏi ra nhe tạm thời cj giúp mụt câu nhe

Nguyễn Lê Phước Thịnh
26 tháng 2 2022 lúc 19:33

a: \(=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=\dfrac{-5}{7}+1+\dfrac{5}{7}=1\)

b: \(=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{16}\cdot4=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{13}{56}\)

c: \(=\dfrac{2}{3}+\dfrac{1}{3}\cdot\dfrac{-24+45}{54}\cdot\dfrac{12}{7}\)

\(=\dfrac{2}{3}+\dfrac{1}{3}\cdot\dfrac{21}{54}\cdot\dfrac{12}{7}=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{6+2}{9}=\dfrac{8}{9}\)

d: \(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{107}-\dfrac{1}{111}\)

\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{108}{333}=\dfrac{12}{37}\)

Ánh2103
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 13:18

b: Xét ΔABE vuông tại A có AH là đường cao ứng với cạnh huyền BE

nên \(BH\cdot BE=AB^2\left(1\right)\)

Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

Mỹ LInh
Xem chi tiết
Linh Ninh
Xem chi tiết
Dark_Hole
6 tháng 3 2022 lúc 17:38

e tách ra 10 câu 1 thôi nhé =)

Tạ Tuấn Anh
6 tháng 3 2022 lúc 17:54

tách ra nhé bn

Ngô Thị Phương Anh
Xem chi tiết
Tuyet Anh Lai
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 10:07

a: =>x>=0 và x^2+x=x^2

=>x=0

a: =>x>=1 và 1-x^2=x^2-2x+1

=>-2x^2+2x=0 và x>=1

=>x=1

a: =>x>=1 và 1-2x^2=x^2-2x+1

=>-3x^2+2x=0 và x>=1

=>\(x\in\varnothing\)

a: ĐKXĐ: x<=2 và x^2-2x=x^2-4x+4

=>x=2

a: =>căn x^2-4=x-2

=>x>=2 và x^2-4=x^2-4x+4

=>x>=2 và 4x=8

=>x=2

b: =>x>=0 và x^2-4x+1=x^2

=>-4x+1=0 và x>=0

=>x=1/4

b: =>x>=-1 và x^2+x+1=x^2+2x+1

=>x=0

c: =>x>=1 và 4x^2-8x+1=x^2-2x+1

=>x>=1 và 3x^2-6x=0

=>x=2

b: =>x>=-1 và 5x^2-2x+2=x^2+2x+1

=>x>=-1 và 4x^2-4x+1=0

=>x=1/2

b: =>căn 4x^2-x+1=2x+3

=>x>=-3/2 và 4x^2-x+1=(2x+3)^2=4x^2+12x+9

=>x>=-3/2 và -13x=8

=>x=-8/13

HT.Phong (9A5)
2 tháng 7 2023 lúc 11:22

1)  \(\sqrt{x^2+x}=x\) (Thỏa mẵn với mọi x)

\(\Leftrightarrow x^2+x=x^2\)

\(\Leftrightarrow x^2+x-x^2=0\)

\(\Leftrightarrow x=0\)

Vậy \(x=0\)

2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\) )

\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)

\(\Leftrightarrow1-x^2=x^2-2x+1\)

\(\Leftrightarrow-x^2-x^2+2x=1-1\)

\(\Leftrightarrow-2x^2+2x=0\)

\(\Leftrightarrow-2x\left(x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

Vậy: \(S=\left\{0;1\right\}\)

\(\sqrt{1-2x^2}=x-1\) (ĐK: \(x\le\sqrt{\dfrac{1}{2}}\))

\(\Leftrightarrow1-2x^2=\left(x-1\right)^2\)

\(\Leftrightarrow1-2x^2=x^2-2x+1\)

\(\Leftrightarrow-2x^2-x^2+2x=1-1\)

\(\Leftrightarrow-3x^2+2x=0\)

\(\Leftrightarrow-x\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)

Vậy: \(S=\left\{0;\dfrac{2}{3}\right\}\)

\(\sqrt{x^2-2x}=2-x\) (ĐK: \(\left\{{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\) )

\(\Leftrightarrow x^2-2x=\left(2-x\right)^2\)

\(\Leftrightarrow x^2-2x=4-4x+x^2\)

\(\Leftrightarrow x^2-x^2-2x+4x=4\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy: \(x=2\)

\(\sqrt{x^2-4}-x+2=0\) (ĐK: \(\left\{{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\))

\(\Leftrightarrow\sqrt{x^2-4}=x-2\)

\(\Leftrightarrow x^2-4=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4=x^2-4x+4\)

\(\Leftrightarrow x^2-x^2+4x=4+4\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy: \(x=2\)