Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiếu Ngô

Những câu hỏi liên quan
Minh Thiên
Xem chi tiết
Ngunhucho
Xem chi tiết

F(x)=62+5x+8+3x-3x2+3x3

      =(36+8)+(5x+3x)-3x2+3x3

      =3x3-3x2+8x+44

G(x)=12x2-6-9x2+3x3

       =3x3+(12x2-9x2)-6

       =3x3+3x2-6

F(x)+G(x)=3x3-3x2+8x+44+3x3+3x2-6

                =(3x3+3x3)+(-3x2+3x2)+8x+(44-6)

                =6x3+8x+38

Hà Quang Minh
6 tháng 8 2023 lúc 21:23

\(F\left(x\right)=G\left(x\right)\\ \Rightarrow6^2-5x+8+3x-3x^2+3x^3=12x^2-6-9x^2+3x^3\\ \Leftrightarrow-3x^2-2x+44=3x^2-6\\ \Leftrightarrow6x^2+2x-50=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{301}}{6}\\x=\dfrac{-1-\sqrt{301}}{6}\end{matrix}\right.\)

Trần Quốc Thịnh
6 tháng 8 2023 lúc 21:25

Ta có : F(x)=G(x) suy ra: 3x^3 + 3x^2 - 2x + 8 = 3x^3+3x^2 -6

                                        3x^3+ 3x^2 -2x +8 -3X^3- 3x^2+6=0

                                         (3x^3-3x^3)+(3x^2-3x^2)-2x+(8+6)=0

                                         -2x +14 =0

                                          2x         =14

                                            x          = 7

Oh Sehun
Xem chi tiết
Hoàng Gia Minh
Xem chi tiết
nobi nobita
Xem chi tiết
HIẾU 10A1
4 tháng 4 2021 lúc 22:46

câu hỏi bạn ơi

 

HT2k02
5 tháng 4 2021 lúc 5:38

a)

\(f\left(x\right)=x^4-5x^2-x^3+7x^2+3x-8=x^4-x^3+2x^2+3x-8\\ g\left(x\right)=x^3-3x^2-x^4-3x-17+2x^2=-x^4+x^3-x^2-3x-17\\ f\left(x\right)+g\left(x\right)=x^2-25\)

b) 

\(f\left(x\right)+g\left(x\right)=0\\ \Leftrightarrow x^2-25=0\Leftrightarrow x=\pm5\)

ngô minh châu
Xem chi tiết
Vĩ Vĩ
Xem chi tiết
Akai Haruma
12 tháng 8 2023 lúc 23:52

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

Akai Haruma
12 tháng 8 2023 lúc 23:54

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

Akai Haruma
12 tháng 8 2023 lúc 23:55

Tìm min

$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$

$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$

$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$

$\Leftrightarrow x=\frac{1}{10}$

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:58

Bài 1:

Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)

\(\Leftrightarrow3x^2-11x=0\)

\(\Leftrightarrow x\left(3x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)

Oh Sehun
Xem chi tiết
Đy Ngân Hà
Xem chi tiết
Lê Hà Phương
31 tháng 7 2016 lúc 16:50

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

Lê Hà Phương
31 tháng 7 2016 lúc 17:05

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0