tìm a biết a= 1/20+1/30+1/42+.....................+1/2550
GIÚP Mình GIẢI NHa
A = 1/20 + 1/30 + 1/42 + ..... + 1/72 + 1/90
GIẢI GIÚP MÌNH NHA
A=1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9 1/9*10
A= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 -1/9 + 1/9 - 1/10
A= 1/4 - 1/10
A= 3/20
tách mẫu lần lượt thanhf4.5,5.6,6.7,......,9.10
phân tích thành hiệu thì có
thanks
1/20+1/30+1/42+...+1/72+1/90
=1/4*5+1/5*6+1/6*7+...+1/9*10
=1/4-1/5+1/5-1/6+1/6-1/7+...+1/9-1/10
=1/4-1/10
=3/20
(k) đúng cho mình nha
4. Tìm x biết:
\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-\dfrac{1}{30}-\dfrac{1}{42}-\dfrac{1}{56}-\dfrac{1}{72}-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)
Giải chi tiết giúp mình nha.
\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-\dfrac{1}{30}-\dfrac{1}{42}-\dfrac{1}{56}-\dfrac{1}{72}-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{3.4}\) - \(\dfrac{1}{4.5}\) - \(\dfrac{1}{5.6}\) - \(\dfrac{1}{6.7}\) - \(\dfrac{1}{7.8}\)- \(\dfrac{1}{8.9}\) - \(\dfrac{1}{9.10}\) - \(\dfrac{1}{10.11}\) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+ \(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\) + \(\dfrac{1}{10.11}\) =\(x\)-\(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+ \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{11}\) = \(x\) - \(\dfrac{5}{13}\)
\(x-\dfrac{5}{13}=\dfrac{1}{11}\)
\(x\) = \(\dfrac{1}{11}\) + \(\dfrac{5}{13}\)
\(x\) = \(\dfrac{68}{143}\)
a) 13/50 + 9% + 41/100 + 0,24
b) 2018 x 2020 - 1/ 2017 + 2018 x 2019
c) 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42
Giải giúp mình với ạ. Cho mình xin cách giải nha cảm ơn
`@` `\text {Ans}`
`\downarrow`
`a)`
`13/50 + 9% + 41/100 + 0,24`
`= 0,26 + 0,09 + 0,41 + 0,24`
`= (0,26 + 0,24) + (0,09 + 0,41)`
`= 0,5 + 0,5`
`= 1`
`b)`
`2018 \times 2020 - 1/2017 + 2018 \times 2019`
`= 2018 \times (2020 + 2019) - 1/2017`
`= 2018 \times 4039 - 1/2017`
`= 8150702`
`c)`
`1/2 + 1/6 + 1/12 + 1/20 +1/30 +1/42`
`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}\)
`=`\(1-\dfrac{1}{7}\)
`= 6/7`
\(a,\dfrac{13}{50}+9\%+\dfrac{41}{100}+0,24\\ 0,26+0,09+0,41+0,24\\ =\left(0,26+0,24\right)+\left(0,09+0,41\right)\\ =0,5+0,5\\ =1\\ b,2018\times2020-\dfrac{1}{2017}+2018\times2019\\ =2018\times\left(2020+2019\right)-\dfrac{1}{2017}\\ =2018\times4039-\dfrac{1}{2017}\\ =3150702-\dfrac{1}{2017}\\ c,\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\\ =1-\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}.........+\dfrac{1}{6}-\dfrac{1}{7}\\ =1-\dfrac{1}{7}\\ =\dfrac{6}{7}\)
Cảm ơn các bạn đã trả lời giúp mình câu hỏi nha
0 dùng máy tính bỏ túi hãy so sánh
a)(1/3)^42 và (1/5)^63
b)(1/6)^45 và (1/9)^30
c)(1/5)^30 và (1/10)^20
giải dùm mình nha mình đang cần gấp
/ là phần nhé
khó lắm máy tính bỏ túi có tính được đâu
Giải giùm mình nha!
A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
1/20 + 1/30 + 1/42 + ... + 1/156
= 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/12.13
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/12 - 1/13
= 1/4 - 1/13
= 9/52
1/20 + 1/30 + 1/42 + ... + 1/156
= 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/12.13
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/12 - 1/13
= 1/4 - 1/13
= 9/52
A=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11+1/11.12
A=1/5-1/12
Tự tính
Giúp mình nha cảm ơn bạn nhiều lắm!
A= \(\dfrac{1}{50}-\dfrac{1}{6}-\dfrac{1}{12}-\dfrac{1}{20}-\dfrac{1}{30}-\dfrac{1}{42}\)
\(A=\dfrac{1}{50}-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=\dfrac{1}{50}-\dfrac{5}{14}\)
\(=\dfrac{14-250}{700}=\dfrac{-236}{700}=-\dfrac{59}{175}\)
hãy so sánh
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/ 72 vơí 1/2
giúp mình nha ( giải chi tiết giùm mình )
Đặt S=1/6+1/12+1/20+1/30+1/42+1/56+1/72
=> S=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
=> S=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
=> S=1/2-1/9
=> S=7/18
Vì 7/18<1/2
=> S<1/2
Mọi người k mik nhé, :)))
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/8-1/9
= 1/2 - 1/9
= 7/18
Bn tự so sánh vs 1/2 nha
1/6+1/12+1/20+130+1/42+1/56+1/72
=1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
=1/2-1/9=7/18
ta quy đồng 7/18 và 1/2 bằng 7/18 và 9/18
vậy 1/6+1/12+1/20+1/30+1/42+1/56+1/72 <1/2
Tính giá trị của biểu thức A = 1/6 + 1/12 +1/20 + 1/30 + 1/42 +1/56
giúp mình giải nhé
ta có:
A= 1/6+1/12+1/20+1/30+1/42+1/56
= 1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
= 1/2-1/8
= 3/8
vậy A= 3/8
Bài 1
D = 1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2.
Mọi người nhớ giải ra giúp mình nha ai giảu được mình tặng 3 tick
\(D=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(D=\frac{1}{90}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
D=1/90 - 1/72 -1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
D=1/90-(1/72+1/56+1/42+1/30+1/20+1/12+1/6+1/2)
D=1/90-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72)
D=1/90-(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
D=1/90-(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9)
D=1/90-(1/1-1/9)
D=1/90-8/9
D=(-79/90)
\(D=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(D=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(D=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\left(\frac{9}{9}-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\frac{8}{9}\)
\(D=\frac{1}{90}-\frac{90}{80}\)
\(D=\frac{-79}{80}\)