Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kawasaki
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Thanh Thuy Tran
4 tháng 2 2017 lúc 8:42

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!

Lee Min Ho
Xem chi tiết
phan gia huy
Xem chi tiết
Vương Hoàng Minh
Xem chi tiết
Đinh Huy Sáng
19 tháng 12 2016 lúc 21:52

0.4;0.5;0.1

Trúc Mai Huỳnh
Xem chi tiết
alibaba nguyễn
4 tháng 12 2018 lúc 13:43

\(\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{z+x}{xyz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\zx=3\end{cases}}\)

Làm nốt

Nguyễn Thu Hoài
Xem chi tiết
alibaba nguyễn
1 tháng 2 2017 lúc 10:22

Sửa lại bài bạn ở trên:

Ta có: x4 + y4 + z4 \(\ge\)(xy)2 + (yz)2 + (zx)2

\(\ge\)xzy2 + xyz2 + yzx2 = xyz(x + y + z) = xyz

Dấu = xảy ra khi x = y = z

Kết hợp với x + y + z = 1

\(\Rightarrow x=y=z=\frac{1}{3}\)

lê thị tiều thư
1 tháng 2 2017 lúc 9:53

đề => \(x^4+y^4+z^4=xyz\left(x+y+z\right)\left(1\right)\)

ta có bđt \(a^2+b^2+c^2\ge ab+bc+ac\)

áp dụng ta được \(\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge xy.yz+xy.zx+yz.xz=xyz\left(x+y+z\right)\)

dấu "=" xảy ra <=> x=y=z

mà x+y+z=1

=>x=y=z=1/3 

(nếu cần cm bđt phụ thì nói mình nha)

Nguyễn Thu Hoài
2 tháng 2 2017 lúc 20:24

Cám ơn bạn, mình làm được rồi!

Big City Boy
Xem chi tiết
Akai Haruma
23 tháng 1 2022 lúc 18:04

Đề thiếu. Bạn coi lại đề

Nguyễn Lê Phước Thịnh
23 tháng 1 2022 lúc 19:24

Đề thiếu rồi bạn

Mangekyou Sharingan
Xem chi tiết
Phùng Minh Quân
1 tháng 2 2018 lúc 16:41

Ta có :

\(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)

\(\Rightarrow\)\(x^4+y^4+z^4=xyz.\left(x+y+z\right)\)

Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\), dấu "=" xảy ra khi \(a=b=c\)TA CÓ :

\(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2=\ge xy.yz+yz.zx+zx.xy\)\(=xyz.\left(x+y+z\right)\)

\(\Rightarrow\)\(x=y=z\)

Mà \(x+y+z=1\)\(\Rightarrow\)\(x=y=z=\frac{1}{3}\)

Vậy hệ phương trình có nghiệm \(\left(x;y;z\right)=\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right)\)