Giair hệ phương trình: \(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(z+x\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(x+z\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
b)\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}}\)
Giải hệ phương trình:
x,y,z > 0
x + y + z = 1
x4 + y4 + z4 = xyz
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=1\frac{1}{5}\\\frac{xyz}{x+z}=1\frac{1}{2}\end{cases}}\)
Giải hệ phương trình\(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x+y+z=\frac{3}{xyz}\\\sqrt{x}+\sqrt{y}+\sqrt{z}=3\end{cases}}\)
Tìm a,b sao cho hệ phương trình có nghiệm duy nhất
xyz+z=a
xyz^2+z=b
x^2+y^2+z^2=4