giải dùm mik vs: cho tgiac ABC vuông tại A, bik AB/AC = 5/6 và đường cao AH= 30cm. tính HB HC
Cho ∆ABC vuông tại A Biết rằng AB/AC= 5/6 đường cao AH = 30cm tính HB,HC?
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
Bài 2:
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng vói cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A. Biết AB/AC = 5/6, đường cao AH = 30cm. Tính HB, HC.
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\Rightarrow AB=\dfrac{5}{6}AC\)
Áp dụng hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{30^2}=\dfrac{1}{\left(\dfrac{5}{6}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{AC^2}\left(\dfrac{1}{\left(\dfrac{5}{6}\right)^2}+1\right)=\dfrac{61}{25}.\dfrac{1}{AC^2}\)
\(\Rightarrow AC=6\sqrt{61}\)
\(AB=\dfrac{5}{6}AC=5\sqrt{61}\)
\(BC=\sqrt{AB^2+AC^2}=61\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=25\)
\(CH=BC-BH=36\)
Cho tam giác ABC vuông tại A. Biết AB/AC = 5/6, đường cao AH = 30cm. Tính HB, HC.
Xét △AHB và△CHA có:
∠AHB=∠CHA=90 độ
∠BAH=∠ACH (vì cùng phụ với ∠HAC)
⇒△AHB∼△CHA (g.g)
⇒HB/AH=AH/HC=AB/AC
Mà AB/AC=5/6
⇒HB/AH=AH/HC=5/6
Mặt khác:AH= 30 cm
⇒HB/30=30/HC=5/6
⇒HB/30=5/6 và 30/HC=5/6
⇒HB=5/6.30 và HC=30.6/5
⇒HB=25cm và HC=36cm
Vậy HB=25cm;HC=36cm
Cho tam giác ABC vuông tại A biết AB/AC=5/6 đường cao AH=30cm . Tính HB , HC
Cho tam giác ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{6}\), đường cao AH = 30cm. Tính HB, HC
Hệ thức lượng trong tam giác vuông :
\(AB^2=BC.BH\left(1\right)\)
\(AC^2=BC.CH\left(2\right)\)
\(\left(1\right):\left(2\right)\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\left(\dfrac{AB}{AC}=\dfrac{5}{6}\right)\)
\(\Rightarrow BH=\dfrac{25}{36}CH\)
mà \(AH^2=BH.CH\)
\(\Rightarrow\dfrac{25}{36}CH^2=AH^2=30^2\)
\(\Rightarrow\dfrac{5}{6}CH=30\Rightarrow CH=\dfrac{30.6}{5}=36\) (\(\left(cm\right)\)
\(\Rightarrow BH=\dfrac{25}{36}.36=25\) \(\left(cm\right)\)
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABH đồng dạng với tg ACH
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}=\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{30}{HC}=\dfrac{5}{6}\Rightarrow HC=\dfrac{6.30}{5}=36cm\)
\(\Rightarrow\dfrac{HB}{30}=\dfrac{5}{6}\Rightarrow HB=\dfrac{5.30}{6}=25cm\)
Cho tam giác ABC vuông tại A biết AB phần AC bằng 5 phần 6, đường cao AH bằng 30cm. Tính HB và HC ?
Đặt \(\frac{AB}{5}=\frac{AC}{6}=k\)
=> AB = 5k, AC = 6k.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)
=> \(\frac{11}{30}k^2=\frac{1}{900}\)
=> \(k=\frac{\sqrt{330}}{330}\left(cm\right)\)
=> AB = \(\frac{\sqrt{330}}{66}\) (cm); AC = \(\frac{\sqrt{330}}{55}\)(cm)
=> HB, HC = (Pytago)
Cho tam giác ABC vuông tại A , đường cao AH , H thuộc BC, biết AH=30cm,AD:AC=5:6. Thính HB,HC,BC,AB,AC?
sửa đề : \(\frac{AB}{AC}=\frac{5}{6}\Rightarrow AB=\frac{5}{6}AC\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{900}=\frac{1}{\left(\frac{5}{6}AC\right)^2}+\frac{1}{AC^2}\Rightarrow AC=6\sqrt{61}\)cm
\(\Rightarrow AB=\frac{30\sqrt{61}}{6}=5\sqrt{61}\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=61\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{25.61}{61}=25\)cm
=> \(HC=BC-HB=61-25=36\)cm
ta có: \(\frac{AB}{AC}\)\(=\frac{5}{6}\Rightarrow AB=\frac{5}{6}AC\)
áp dụng hệ thức lượng: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{30^2}=\frac{1}{\left(\frac{5}{6}AC\right)^2}+\frac{1}{AC^2}=\frac{1}{AC^2}\)\(\left(\frac{1}{\left(\frac{5}{6}\right)^2}+1\right)\)\(=\frac{61}{25}.\)\(\frac{1}{AC^2}\)
\(\Rightarrow AC=6\sqrt{61}\)
\(AB=\frac{5}{6}AC=5\sqrt{61}\)
\(BC=\sqrt{AB^2+AC^2}\)\(=61\)
áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=25\)
\(CH=BC-BH=36\)
Hok tốt