Những câu hỏi liên quan
Ngự thủy sư
Xem chi tiết
Trần Phúc Khang
29 tháng 5 2019 lúc 16:11

Theo đề bài ta có

\(a\left(1-a\right)\left(1-b\right)\ge0\)=> \(a^2b\ge a^2+ab-a\)

\(b\left(1-c\right)\left(1-b\right)\ge0\)=> \(b^2c\ge b^2+bc-b\)

Tương tự \(c^2a\ge c^2+ac-c\)

Khi đó

\(VT\ge a^2+b^2+c^2+2ab+2bc+2ac-\left(a+b+c\right)=2^2-2=2\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=1,c=0\)và các hoán vị

Bình luận (0)
Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 7:24

Vì \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{cases}}\)

\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow VT\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)

Do \(a+b+c\ge2\Rightarrow a+b+c-1\ge1\Rightarrow VT\ge2\)

Đẳng thức xảy ra khi 1 trong 3 số a,b,c có 2 số bằng 1 và 1 số bằng 0

Bình luận (0)
Itachi Uchiha
19 tháng 5 2017 lúc 14:15

bạn thử giải hộ mình mấy bài này vs

https://diendantoanhoc.net/topic/173087-to%C3%A1n-%C3%B4n-thi-v%C3%A0o-l%E1%BB%9Bp-10/#entry681162

Bình luận (0)
Itachi Uchiha
19 tháng 5 2017 lúc 14:33

đây này

1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:

\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)

2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)

Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)

3,Cho a,b,c>0 thỏa mãn a+b+c=3.

Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)

4,Cho a,b,c>0.

Tìm GTNN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)

Bình luận (0)
michelle holder
Xem chi tiết
Lightning Farron
28 tháng 4 2017 lúc 21:58

Đặt \(THANG=ab\left(a+1\right)+bc\left(b+1\right)+ca\left(c+1\right)\) :v

\(0\le a;b;c\le1\)\(\Rightarrow\left\{{}\begin{matrix}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow THANG\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)

\(a+b+c\ge2\) nên \(a+b+c-1\ge1\). Vậy \(THANG\ge2\cdot1=2\)

Đẳng thức xảy ra khi trong 3 số \(a;b;c\) có 2 số bằng 1 và một số bằng 0

Bình luận (1)
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
18 tháng 2 2022 lúc 10:02

Ta có:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)

\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)

Tương tự ta được:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)

\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)

Vậy ta cần chứng minh:

\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)

Ta viết lại bất đẳng thức trên thành:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
Xem chi tiết
tth_new
22 tháng 6 2020 lúc 20:45

Đợi t qua thi nhé full.

Bình luận (0)
 Khách vãng lai đã xóa
Phan PT
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 21:37

Do \(abc=1\), nếu viết BĐT về dạng: 

\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Có lẽ bạn sẽ nhận ra ngay. Một bài toán vô cùng quen thuộc.

Chắc với bài toán này thì bạn ko cần lời giải nữa, nó có ở khắp mọi nơi.

Bình luận (1)
zZz Cool Kid_new zZz
Xem chi tiết
Tran Le Khanh Linh
1 tháng 9 2020 lúc 19:58

Chắc áp dụng BĐT AM-GM á

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
2 tháng 9 2020 lúc 7:43

Bất đẳng thức sau đây đúng với mọi a, b, c không âm:

\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}+k\left(\frac{a}{b+c}-2\right)\)

với \(k=\frac{23}{25}\).

Note. \(k_{\text{max}}\approx\text{0.92102588865167}\) là nghiệm của phương trình bậc 5: 

15116544*k^5+107495424*k^4-373143024*k^3+280903464*k^2+209797812*k-227353091 = 0

Bình luận (0)
 Khách vãng lai đã xóa
Minh Quân Nguyễn Huy
Xem chi tiết
Con Chim 7 Màu
26 tháng 5 2019 lúc 10:57

\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\) 

\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)

\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}}\)

\(=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca=1\left(1\right)\) 

Áp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

Tương tự:\(b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(2\right)\)

Từ (1) và (2) suy ra:

\(P\ge1+\frac{8abc}{8abc}=2\left(đpcm\right)\)

Dấu '=' xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

:))

Bình luận (0)
cao van duc
26 tháng 5 2019 lúc 11:04

ở phần cô si phần cuối là bn sai r

vì >= nhưng ở dưới mẫu nên bị đảo lại thành =< nên bn lm như thế k đúng

đay là link giải https://diendan.hocmai.vn/threads/bdt-a-2-b-2-c-2-dfrac-8abc-a-b-b-c-c-a-geq-2.341255/

Bình luận (0)
em nhỏ 5 tuổi
27 tháng 5 2019 lúc 19:01

Em không chắc đâu nha....Em mới học BĐT nên còn khá ngu về phần này,xin được chỉ giáo thêm ạ! :D

Biển đổi P trở thành\(P=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) (như a/c Con Chim 7 Màu gì đó)

\(=\left(\frac{a^2+b^2+c^2}{ab+bc+ca}-1\right)+\left(\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)-1+2\)

\(=\frac{2\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)

\(=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)

\(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\)

Để cho gọn,ta đặt \(P=S_c\left(a-b\right)^2+S_b\left(c-a\right)^2+S_a\left(b-c\right)^2+2\) 

Với \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\) (như trên)

\(S_a=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{a}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)

\(S_b=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{b}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)

Ta đi chứng minh: \(S_a;S_b;S_c\ge0\).Thật vậy,xét Sc:

Ta chứng minh \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\ge\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\left(ab+bc+ca\right)\) (biến đổi làm cho 2 vế đồng bậc)

Chuyển vế qua ta cần chứng minh \(ab\left(a+b\right)+bc\left(b-c\right)+ca\left(a-c\right)\ge0\) (1)

Giả sử \(a\ge b\ge c\Rightarrow\)BĐT (1) đúng nên \(S_c\ge0\)

Do tính đối xứng của P nên ta cũng có \(S_b;S_c\ge0\)

Từ đây suy ra \(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\ge2\left(đpcm\right)\)

Bình luận (0)
Phạm Kim Oanh
Xem chi tiết
Khôi Bùi
2 tháng 4 2022 lúc 7:59

Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)

Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\) 

Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\) 

" = " \(\Leftrightarrow a=b=c=1\)

Bình luận (1)