Cho đa thức
f(x) = ax2 + bx + c
Biết f(x) = 0 với mọi x, Chứng minh rằng a=b=c
Cho đa thức f(x) = ax2 + bx + c
Biết f(0) = 2018, f(1) = 2019, f(-1) = 2020, Tính f(2)
Cho đa thức f(x) = ax2 + bx + c
Biết f(0) = 2018, f(1) = 2019, f(-1) = 2020, Tính f(2)
Ta có :
f(0) = a.0^2 + b.0 + c = 2018 => c = 2018
f(1) = a + b + c = 2019 => a + b = 1
f(-1) = a - b + c = 2020 => a - b = 2
Suy ra : a = 1,5 ; b = = - 0,5
Vậy : f(x) = 1,5x^2 - 0,5x + 2018
Suy ra: f(2) = 1,5.2^2 - 0,5.2 + 2018 = 2023
\(f\left(0\right)=c⋮3\) ;
\(f\left(1\right)=a+b+c⋮3\) mà \(c⋮3\Rightarrow a+b⋮3\)
\(f\left(-1\right)=a-b+c=-2b+\left(a+b+c\right)⋮3\) mà \(a+b+c⋮3\Rightarrow-2b⋮3\Rightarrow b⋮3\) (do 2 và 3 nguyên tố cùng nhau)
\(\left\{{}\begin{matrix}a+b+c⋮3\\b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow a⋮3\)
a,Cho đa thức f(x)=ax+b (a khác 0). Biết f(0)=0, chứng minh rằng F(x)=-f(-x)với mọi x
b,Đa thức f(x)=ax^2=bx+c (a khác 0).Biết F(1)=F(-1), chứng minh rằng f(x) với mọi x
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
*f(0) nguyên suy ra 0+0+c=c nguyên
*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên
*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)
Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)
Cho đa th ức f(x )= ax
2
+bx+c có a+b+c=0 ho ặc a -b+c=0. Chứng minh
r ằng đa thức f(x) có ít nhất một nghiệm
\(f\left(x\right)=ax^2+bx+c\)
Ta có: \(f\left(1\right)=a+b+c;f\left(-1\right)=a-b+c\)
Khi \(a+b+c=0\Rightarrow f\left(1\right)=0\Rightarrow x=1\) là nghiệm đa thức
Khi \(a-b+c=0\Rightarrow f\left(-1\right)=0\Rightarrow x=-1\) là nghiệm đa thức
Vậy đa thức có ít nhất 1 nghiệm.
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
Câu 13. (1,0 điểm) Cho đa thức f(x) = ax2 + bx + c.
a) Chứng tỏ rằng nếu a + b + c = 0 thì đa thức f(x) có một nghiệm x = 1.
b) Áp dụng tìm một nghiệm của đa thức: f(x) = 5x2 – 6x + 1
a: f(1)=a+b+c=0
=>x=1 là nghiệm
b: Vì 5-6+1=0
nên f(x)=5x^2-6x+1 có một nghiệm là x=1
a, Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức P(x) = ax2 + bx + c
b, Chứng tỏ rằng nếu a – b + c = 0 thì x = -1 là một nghiệm của đa thức Q(x) = ax2 + bx + c
$\rm x=1\\\to ax^2+bx+c=a+b+c=0\\\to x=1\,\là \,\,no \,\pt$