Với mọi giá trị x thì biểu thức x+3/x-5 nhân giá trị âm
CMR với mọi x thuộc R thì biểu thức(1-2x)(x-1)-5 luôn nhận giá trị âm
(1-2x)(x-1)-5
=-2x2+3x-1-5
=-2x2+3x-6
=-2(x2-3/2x+3)
=-2(x-3/4)2-39/8
Vì (x-3/4)2≥0 với mọi x
⇒-2(x-3/4)2≤0
⇒-2(x-3/4)2-39/8<0
Vậy biểu thức (1-2x)(x-1)-5 luôn âm với mọi x
8 a ) Với giá trị nào của x thì biểu thức sao nhận giá trị âm x+3/x+5
\(\frac{x+3}{x+5}< 0\)
\(\Rightarrow\)x+3 và x+5 trái dấu
Mà \(x+3< x+5\)
\(\Rightarrow\hept{\begin{cases}x+3< 0\\x+5>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< -3\\x>-5\end{cases}}\)
\(\Rightarrow-3>x>-5\)
Do đó x=-4
Với mọi giá trị của biến x, thì giá trị của biểu thức x2 -2x + 2 luôn
A. Dương. B. không dương. C. âm. D. Không âm
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
bài tập :Tìm các giá trị của x để biểu thức sau có giá tị dương :
a) M=(x+5)(x+9)
b) Khi nào thì biểu thúc B=x^2-3x có giá trị dương
c) Tìm x để biểu thức A= x+3/x-1 có giá trị âm
(mọi người làm bảng xét dấu nhé)
tìm giá trị của x để biểu thức sau nhận giá trị âm :
1.x mũ 2+5nhân x
2. 3 nhân (2nhân x+3)nhân(3x-5)
Bài 1 :
Để \(x^2+5x-x^2\)
\(\Leftrightarrow5>-x^2+x\)
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
chứng minh rằng biểu thức sau có giá trị âm với mọi giá trị x:
L=\(\frac{-1}{3}\)x2 + 2x - 5
3L = -x2 + 6x - 15
= -(x - 3)2 - 6
=> L = \(\frac{-\left(x-3\right)^2}{3}-2\le-2\) \(\forall x\)
chứng minh biểu thức sau luôn có giá trị âm với mọi giá trị cảu biến
a) M= -9x^3+12x-15
b) N= -5-(x-1).(x+2)