Nếu ΔABC vuông tại A thì:
A.\(BC^2\)=\(AB^2\)+\(AC^2\)
B.\(AC^2=AB^2+BC^2\)
C.\(AB^2=BC^2+AC^2\)
D.\(BC^2\)=\(AC^2+AB^2\)
Cho ΔABC vuông tại A, biết (AB) ⃗.(CB) ⃗=4, (AC) ⃗.(BC) ⃗=9. Khi đó AB, AC, BC có độ dài là
A. 2; 3; √13. B. 3; 4; 5. C. 2; 4; 2√5. D. 4; 6; 2√13.
Bài 2: Cho ΔABC vuông tại A
a) Chứng minh: \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
b) Chứng minh: \(BC^2=AB^2+AC^2-2.AB.AC.cosA\)
a) Xét ΔABC vuông tại A có
\(\left\{{}\begin{matrix}\sin\widehat{A}=\dfrac{BC}{BC}=1\\\sin\widehat{B}=\dfrac{AC}{BC}\\\sin\widehat{C}=\dfrac{AB}{BC}\end{matrix}\right.\)
Ta có: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{BC}{1}=BC\)
\(\dfrac{AC}{\sin\widehat{B}}=\dfrac{AC}{\dfrac{AC}{BC}}=BC\)
\(\dfrac{AB}{\sin\widehat{C}}=\dfrac{AB}{\dfrac{AB}{BC}}=BC\)
Do đó: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{AC}{\sin\widehat{B}}=\dfrac{AB}{\sin\widehat{C}}\)
b) Ta có: \(2\cdot AB\cdot AC\cdot\cos\widehat{A}\)
\(=2\cdot AB\cdot AC\cdot0\)
=0
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=AB^2+AC^2+2\cdot AB\cdot AC\cdot\cos\widehat{A}\)
cho tam giác abc vuông tại a ah vuông góc bc cmr :a, ab+ac>bc b,ab+ac>bc c,ab+ac>ah+bc/2 d,ab+ac<ah+bc
a: Xét ΔABC có:
AB+AC>BC(BĐT tam giác)
b: Xét ΔABC có AB+AC>BC(BĐT tam giác)
d: (AB+AC)^2=AB^2+AC^2+2*AB*AC
=BC^2+2*AH*BC<BC^2+2*AH*BC+AH^2=(BC+AH)^2
=>AB+AC<AH+BC
Cho ΔABC có AB=15 cm AC=20cm BC=25cm.
a,Chứng minh ΔABC vuông.Tính đường cao AH.
b,Đường phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc AB,DF vuông góc AC.Tính diện tích AEDF.
c,Chứng minh EF^2 + BC^2 = EC^2 + BF^2
a: Xét ΔBAC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*25=15*20=300
=>AH=12(cm)
b: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
=>BD/BC=3/7; CD/CB=4/7
Xét ΔCAB có DF//AB
nên DF/AB=CD/CB
=>DF/15=4/7
=>DF=60/7(cm)
Xét ΔCAB có DE//AC
nên DE/AC=BD/BC
=>DE/20=3/7
=>DE=60/7(cm)
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
Do đó: AEDF là hình chữ nhật
=>S AEDF=DE*DF=60/7*60/7=3600/49cm2
Cho tam giac ABC vuông tại A Đẳng thức nào đúng
A tan ABC/2=AC/AC+BC
B tan ABC/2=AC/AB-BC
C tan ABC/2=AC/AB+BC
D tan ABC/2=AC/AB.BC
Cho tam giác ABC vuông tại A có AB=30cm, AC=40cm. Kẻ AH vuông góc BC (H∈BC).
a) CM: ΔABC∼ΔHBA
b) Từ H kẻ HD⊥ AB, HE⊥ AC (D ∈ AB, E ∈ AC) AH2= AD.AB và AH2=AE.AC
c) Tính diện tích ΔAED?
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2= AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
Chúc bạn học tốt!
Chọn khẳng định đúng. Cho tam giác ABc vuông tại C ta có :
AB^2=AC^2+BC^2
AC^2=AB^2-BC^2
AC^2=AB^2+BC^2
BC^2=AB^2+AC^2