Cho P = \(\frac{\sqrt{x}-3}{\sqrt{x}+1}\)(ĐKXĐ: \(x\ge0;x\ne1;x\ne9\))
Tìm \(x\inℕ\)để biểu thức \(\frac{1}{P}\)đạt GTLN
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
\(T=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-6\right)}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}\\ =\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\)
Áp dụng bất đẳng thức Cosi ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\)
\(\Rightarrow T\ge\sqrt{3\cdot2+6}=2\sqrt{3}\)
Dấu = xảy ra khi x=4
Rút gọn biểu thức :
a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\) đkxđ : \(x\ge0;x\ne4\)
b) \(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
c) \(C=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\div\frac{\sqrt{x}}{x+\sqrt{x}}\) đkxđ : x > 0
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x-3}}-\frac{3x+9}{x-9}\) (đkxđ: \(x\ge0;x\ne9\)
Rút gọn và tìm giá trị lớn nhất của A
\(ĐKXĐ:x\ne9,x\ge0\)
Ta có : \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3}{\sqrt{x}+3}\)
Ta thấy : \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3>0\)
\(\Rightarrow\frac{3}{\sqrt{x}+3}\le\frac{3}{3}=1\)
Hay : \(A\le1\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy GTLN của \(A=1\) khi \(x=0\)
Cho A=\(\frac{\sqrt{x}-1}{\sqrt{x}+1}\) và B=\(\frac{5}{\sqrt{x}+1}\) ĐKXĐ: x\(\ge0\)và x\(\ne1\)
Có P=A.B. TÌm x là số nguyên lớn nhất để P<-1
Tìm GTNN của C = \(\frac{x+8}{\sqrt{x}+1}\)đkxđ \(x\ge0;x\ne9\)
\(C=\frac{x-1+9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)
Áp dụng BĐT Cauchy:
\(C\ge2\sqrt{\frac{\left(\sqrt{x}+1\right).9}{\sqrt{x}+1}}-2=4\)
\(\Rightarrow C_{min}=4\) khi \(\left(\sqrt{x}+1\right)^2=9\Rightarrow x=4\)
1 Cho bt:A=\((\frac{1}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}):\frac{3}{\sqrt{x}+1}\)
Đkxđ và rút gọn
A = \(\frac{1+x}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{3}\)=\(\frac{1+x}{3\sqrt{x}}\)
ĐKXĐ : x > 0
1.Cho biểu thức \(A=\left(\frac{3+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}-1}\right).\frac{x^2+x\sqrt{x}-\sqrt{x}-1}{\sqrt{x}}\)
a) Tìm ĐKXĐ
b) Rút gọn A
Cho hai biểu thức A= \(\frac{\sqrt{x}+2}{\sqrt{x}-5}\text{ }\text{và}\text{ }B=\frac{1}{\sqrt{x}-5}\)
Tìm tất cả giá trị để A=B.\(|x-4|\)
ĐKXĐ: x\(\ge0,x\ne25\)
Mọi người ơi cần gấp!!!
1 Cho bt:\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
Đkxđ và rút gọn
ĐKXĐ: \(x\ge0\)
\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2}{x-\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)